Two-dimensional Kelvin–Helmholtz instabilities of multi-component fluids

Hyun Geun Lee, Junseok Kim*

Institute of Mathematical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
Department of Mathematics, Korea University, Seoul 136-713, Republic of Korea

HIGHLIGHTS

- The Kelvin–Helmholtz instability of multi-component (more than two) fluids is studied numerically.
- The instability is governed by the modified Navier–Stokes equations and the multi-component convective Cahn–Hilliard equations.
- We investigate the effects of surface tension, density ratio, magnitude of velocity difference, and forcing.

ARTICLE INFO

Article history:
Received 17 May 2014
Received in revised form 8 August 2014
Accepted 16 August 2014
Available online 27 August 2014

Keywords:
Kelvin–Helmholtz instability
Multi-component fluid flows
Phase-field model
Linear growth rate
Billowing cloud formation

ABSTRACT

The Kelvin–Helmholtz instability of multi-component (more than two) incompressible and immiscible fluids is studied numerically using a phase-field model. The instability is governed by the modified Navier–Stokes equations and the multi-component convective Cahn–Hilliard equations. A finite difference method is used to discretize the governing system. To solve the equations efficiently and accurately, we employ the Chorin’s projection method for the modified Navier–Stokes equations and the recently developed practically unconditionally stable method for the multi-component Cahn–Hilliard equations. Through our model and numerical solution, we investigate the effects of surface tension, density ratio, magnitude of velocity difference, and forcing on the Kelvin–Helmholtz instability of multi-component fluids. It is shown that increasing the surface tension or the density ratio reduces the growth of the Kelvin–Helmholtz instability. And it is also observed that as the initial horizontal velocity difference gets larger, the interface rolls up more. We also found that the billow height reaches its maximum more slowly as the initial wave amplitude gets smaller. And, for the linear growth rate for the Kelvin–Helmholtz instability of two-component fluids, the simulation results agree well with the analytical results. From comparison between the numerical growth rate of two- and three-component fluids, we observe that the inclusion of extra layers can alter the growth rate for the Kelvin–Helmholtz instability. Finally, we simulate the billowing cloud formation which is a classic example of the Kelvin–Helmholtz instability and cannot be seen in binary fluids. With our multi-component method, the details of the real flow (e.g., the asymmetry in the roll-up and the self-interaction of the shear layer) are well captured.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

When there is a sufficiently large velocity difference (e.g., shear flow) across a small amplitude perturbed interface between two fluids, the interface is unstable. This interfacial instability is known as the Kelvin–Helmholtz (KH) instability. The instability occurs when the destabilizing effect of shear across the interface overcomes the stabilizing effect of gravity and/or surface tension. It can be observed in a wide variety of natural situations. A classic example is the spectacular billowing cloud formation in the lower atmosphere, an occurrence which is often associated with atmospheric turbulence [1]. It was suggested that the KH instability may provide a trigger mechanism for pulsar glitches [2].

The classical version of the KH instability is outlined by Kelvin [3] and Helmholtz [4], and the associated linear stability has been investigated analytically by Taylor [5] and Miles [6] and numerically by Hazel [7]. The nonlinear development of the KH instability has been extensively investigated experimentally [8,9] and numerically [10–32]. Numerical studies dealt mainly with the...
KH instability at the interface of a two-phase system. Rangel and Sirignano [10] used the vortex-sheet discretization approach to investigate the effects of surface tension and density ratio on the nonlinear evolution of initially small disturbances at an interface between two fluids neglecting the gravitational force. They showed that increasing the surface tension or the density ratio reduces the growth of the disturbance. Numerical simulations of three-dimensional temporally evolving plane mixing layers were performed by Rogers and Moser [12]. They found that the spanwise vorticity rolls up into a corrugated spanwise roller and the streamwise rib vortices develop in the braid region between the rollers. Zhang et al. [18] studied the effects of surface tension on the two-dimensional KH instability of density-matched fluids using a lattice Boltzmann multi-phase model [33] in the nearly incompressible limit and reported that their results are in good agreement with those of Rogers and Moser [12]. Tauber et al. [20] investigated the effects of density ratio, Reynolds number, and Weber number on the nonlinear behavior of a sheared immiscible fluid interface using the front-tracking method. They showed that high enough Reynolds and relatively low Weber numbers lead to the generation of fingers of interpenetrating fluids. Using a fully adaptive nonstiff strategy based on the immersed boundary method, Ceniceros and Roma [22] presented a numerical investigation of the long-time dynamics of two immiscible density- and viscosity-matched fluids shearing past one another. Sahu et al. [24] studied the pressure-driven displacement of a highly viscous fluid by a less viscous one and their results demonstrated that the development of the KH instability becomes more pronounced with increasing viscosity ratio, Reynolds and Schmidt numbers, leading to more intense mixing and rapid removal of the more viscous fluid. The authors [25] also studied the pressure-driven miscible displacement flow in tilted channels with density contrasts at moderate to large Reynolds numbers. Their results indicated that the rates of mixing and displacement are enhanced with increasing density ratio, Froude number, and inclination angle. Computational investigations of the miscible displacement flow are also presented in [34,35]. Sohn et al. [27] performed long-time simulations of the KH instability using an adaptive vortex method and their results showed that the KH instability evolves a secondary instability at a late time, distorting the internal rollup, and eventually develops to a disordered structure. Shadloo and Yildiz [28] examined the effects of Richardson number and density ratio on the development of the KH instability of two incompressible, immiscible, and inviscid fluids using a smoothed particle hydrodynamics method [36] and observed that the growth rate of the KH instability is mainly controlled by the value of the Richardson number, not by the nature of the stabilizing forces. Redapungu et al. investigated the pressure-driven displacement flow of two immiscible fluids of different densities and viscosities in two- [30] and three- [31] dimensional channels. They found that the flow is relatively more coherent in a three-dimensional channel than that in a two-dimensional channel and screw-type instabilities were seen in a three-dimensional channel that cannot be observed in a two-dimensional channel. Fakhari and Lee [32] applied a multiple-relaxation-time lattice Boltzmann method to simulate the KH instability of immiscible two-phase fluids at high Reynolds numbers. They found that increasing the Reynolds number results in a more chaotic interface evolution and eventually shattering of the interface, while surface tension is shown to have a stabilizing effect. For more details on instabilities, we refer to a recent review by Govindarajan and Sahu [37]. Although the basic nonlinear behavior of the KH instability at the interface of a two-phase system has been extensively studied, the understanding of the KH instability of multi-component (more than two) fluids is still quite limited due to the complexity of the interfacial dynamics and the numerical implementation. This paper presents, for the first time to the authors’ knowledge, numerical simulations of the KH instability of multi-component fluids. We are particularly interested in simulating the billowing cloud formation and evaluating the effects of surface tension, density ratio, magnitude of velocity difference, and forcing on the KH instability using a phase-field model [38]. The advantages of the phase-field method are: (1) An explicit tracking of the interface is unnecessary. (2) Topological changes are automatically handled. (3) A time step can be chosen larger than the time step used in the traditional lattice Boltzmann methods which are explicit in nature. (4) A potential disadvantage of the lattice Boltzmann method is that because of its formulation it allows finite compressibility of the fluid. However, we may treat quasi-incompressible systems [39]. Therefore, the phase-field method can also be applied to model double emulsions [40,41], multi-film flow [42], and multi-layer coating. In the phase-field model, the fluid dynamics is governed by the modified Navier–Stokes equations and the multi-component convective Cahn–Hilliard (CH) equations [43,44]. We discretize the governing system using a finite difference method. To solve the equations efficiently and accurately, we employ Chorin’s projection method [45] for the modified Navier–Stokes equations and the recently developed practically unconditionally stable method for the multi-component CH equations [44].

The paper is organized as follows. In Section 2, we present the governing equations that describe the flow of N incompressible immiscible fluids, and state the underlying physics and all assumptions that have been made. In Section 3, the problem description for the KH instability of multi-component fluids is provided. In Section 4, a numerical solution is given. We perform some characteristic numerical experiments for the KH instability of multi-component fluids in Section 5. Finally, conclusions are drawn in Section 6.

2. Phase-field model for the mixture of N incompressible immiscible fluids

We consider the flow of N incompressible immiscible fluids. Let \(\mathbf{c} = (c_1, c_2, \ldots, c_N) \) be a vector-valued phase-field, where each order parameter \(c_k \) is the concentration of each component in the mixture. Thus, admissible states will belong to the Gibbs N-simplex

\[
\mathcal{G} := \left\{ \mathbf{c} \in \mathbb{R}^N \mid \sum_{k=1}^N c_k = 1, \ 0 \leq c_k \leq 1 \right\}.
\]

The free energy of a multi-component system can be written as follows [46]:

\[
\mathcal{F}(\mathbf{c}) = \int_{\Omega} \left(F(\mathbf{c}) - \sum_{i<j} \epsilon_{ij} \nabla c_i \cdot \nabla c_j \right) \, dx,
\]

where \(\Omega \) is a bounded open subset of \(\mathbb{R}^d \) \((d = 1, 2, 3)\) occupied by the system, \(F(\mathbf{c}) \) is the Helmholtz free energy density, and \(\epsilon_{ij} > 0 \) is a parameter that takes into account the molecular interactions between components \(i \) and \(j \). By assuming that \(\epsilon_{ij} = \epsilon \) for all \(i < j \), the total free energy \(\mathcal{F}(\mathbf{c}) \) becomes

\[
\mathcal{F}(\mathbf{c}) = \int_{\Omega} \left(F(\mathbf{c}) + \frac{\epsilon^2}{2} \sum_{k=1}^N |\nabla c_k|^2 \right) \, dx.
\]

Here, we take \(F(\mathbf{c}) = 0.25 \sum_{k=1}^N c_k^2 (1 - c_k)^2 \). The surface tensions \(c_{ij} \) between phases \(i \) and \(j \) will be considered in the modified Navier–Stokes equations (not in the total free energy \(\mathcal{F}(\mathbf{c}) \)). This consideration gives that all interfaces have a uniform thickness. The time evolution of \(\mathbf{c} \) is governed by the gradient of the energy with respect to the \(H^{-1} \) inner product under the additional...
constraint (1). This constraint has to hold everywhere at all times. In order to ensure the last constraint, we use a Lagrange multiplier β_k [43,44,46–50]. The temporal evolution of c_k is given by the following convective CH equation: for $k = 1, 2, \ldots, N$,

$$\frac{\partial c_k}{\partial t} + \nabla \cdot (c_k \mathbf{u}) = \nabla \cdot (M(c) \mathbf{u} \mu_k),$$

$$\mu_k = f(c_k) - \epsilon^2 \Delta c_k + \beta_k,$$

where $\mathbf{u} = (u, v)$ is the fluid velocity, $M(c)$ is a mobility, $f(c_k) = c_k(c_k - 0.5)(c_k - 1)$, and $\beta_k = c_k \sum_{j=1}^N f(c_j)$ [49]. Cahn and Hilliard [51] used the mobility rather than the molecular diffusion coefficient [52]. The mobility is treated as a concentration dependent mobility in [53–59] (e.g., $M(c) = \sum_{i<j} c_i c_j$ for a multi-component system), and the CH equation has been extensively employed with a constant mobility [60–66]. In this paper, we take the mobility to be constant ($M(c) = M$), as a concentration dependent mobility is computationally more expensive. The mobility M controls the relaxation time of the interface [67], and has to be chosen judiciously. Jacqmin [68] summarized the physical considerations that should go into choosing an interfacial relaxation time: “straining flows can thin or thicken the interface and this must be resisted by a high enough diffusion. On the other hand, too large a diffusion will overly damp the flow”.

The characteristics of multiphase fluid flow is investigated by coupling the modified Navier–Stokes equations and Eqs. (2)–(3) with the constant mobility M:

$$\rho(c) \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \nabla \cdot \left[\eta(c)(\nabla \mathbf{u} + \nabla \mathbf{u}^T) \right]$$

$$+ \text{SF}(c) + \rho(c) \mathbf{g},$$

$$\nabla \cdot \mathbf{u} = 0,$$

$$\frac{\partial c_k}{\partial t} + \nabla \cdot (c_k \mathbf{u}) = M \Delta \mu_k,$$

$$\mu_k = f(c_k) - \epsilon^2 \Delta c_k + \beta_k,$$

where $\rho(c)$ is the variable density, p is the pressure, $\eta(c)$ is the variable viscosity, $\text{SF}(c)$ is the surface tension force, and $\mathbf{g} = (0, -g)$ is the gravity term under gravitational acceleration g. $\rho(c)$ and $\eta(c)$ are defined as $\rho(c) = \sum_{k=1}^N \rho_k c_k$ and $\eta(c) = \sum_{k=1}^N \eta_k c_k$, where ρ_k and η_k are the density and viscosity of the kth fluid, respectively. For a large density ratio, the continuity equation cannot be reduced to Eq. (5). In such cases, we should use $\rho_k + \nabla \cdot (\rho_k \mathbf{u}) = 0$ as the continuity equation. The surface tension is not additive [69] and is dependent on the potential energy related to the interaction of a pair of different molecules [70]. This dependence can be ignored in the heuristic models for the surface tension that are widely used here. Here, for $\text{SF}(c)$ in Eq. (4), we use the generalized continuous surface tension force formulation [43]: $\text{SF}(c) = \sum_{i=1}^{N-1} \sum_{j=1}^{N-1} 0.5 \sigma_{ij} \text{sf}(c_i) + \text{sf}(c_j) \delta(c_i, c_j)\[(\nabla c_i) \nabla c_j]\]$, where σ_{ij} is the physical surface tension coefficient between fluids i and j, $\text{sf}(c_k) = -6 \sqrt{2} k \nabla \cdot (\nabla c / |\nabla c|) / |\nabla c|$, and $\delta(c_i, c_j) = 5 \epsilon c_i c_j$.

3. Definition of the problem

The KH instability can occur at the interface between N horizontal parallel fluids with different velocities and densities. To simulate this natural flow phenomenon, we consider the flow of N incompressible and immiscible fluids that are bounded by two horizontal walls with the height of H ($0 < y < H$) [Fig. 1]. For simplicity, the length of the computational domain L ($0 < x < L$) is chosen to be equal H ($L = H$) unless otherwise stated. Initial sinusoidal perturbations are applied to the fluid–fluid interfaces. All quantities subscripted with a k are properties of the kth fluid for $k = 1, 2, \ldots, N$. For the densities of N fluids, it is always the case that $\rho_1 < \rho_2 < \cdots < \rho_N$ so that buoyancy effects do not dominate. Each fluid has a base horizontal speed U_k.

To non-dimensionalize the governing equations (4)–(7), we define characteristic quantities of length (L_c), velocity (U_c), density (ρ_c), viscosity (ν_c), and chemical potential (μ_c). In our simulations, we choose $L_c = H$, $U_c = \max_k U_k$, $\rho_c = \rho_{N_c}$, and $\nu_c = \eta_{n_c}$. We then introduce the following dimensionless variables:

$$x' = \frac{x}{L_c}, \quad u' = \frac{u}{U_c}, \quad t' = \frac{t U_c}{L_c}, \quad \rho' = \frac{\rho}{\rho_c},$$

$$p' = \frac{p}{\rho_c U_c^2}, \quad \eta' = \frac{\eta}{\nu_c}, \quad g' = \frac{g}{g_c}, \quad \mu' = \frac{\mu_k}{\mu_c},$$

where the primed quantities are dimensionless. Substituting these variables into Eqs. (4)–(7) and dropping the primes, we have for $k = 1, 2, \ldots, N$,

$$\rho(c) \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \frac{1}{Re} \nabla \cdot \left[\eta(c)(\nabla \mathbf{u} + \nabla \mathbf{u}^T) \right]$$

$$+ \text{SF}(c) + \rho(c) \frac{\mu(c)}{Fr_c} \mathbf{g},$$

$$\nabla \cdot \mathbf{u} = 0,$$

$$\frac{\partial c_k}{\partial t} + \nabla \cdot (c_k \mathbf{u}) = \Delta \mu_k,$$

$$\mu_k = f(c_k) - \epsilon^2 \Delta c_k + \beta_k,$$

where $\text{SF}(c) = \sum_{i=1}^{N-1} \sum_{j=1}^{N-1} 0.5 \text{sf}(c_i) + \text{sf}(c_j) \delta(c_i, c_j) / \rho_{\nu_c} \mu_{\nu_c}$, $g_c = (0, -1)$, and ϵ is redefined according to the scaling. The dimensionless parameters are the Reynolds number, $Re = \rho_c U_c L_c / \nu_c$, the Weber number of fluids i and j, $We_{ij} = \rho_i U_i L_c / \sigma_{ij}$, the Froude number, $Fr = U_c / \sqrt{g_c L_c}$, and the Péclet number, $Pe = U_c L_c / (\mu_c \Omega)$. The governing equations (8)–(11) are considered with the following boundary conditions: at the top and bottom of the domain Ω we apply $\nabla u_y = v = \frac{\partial u_x}{\partial y} = \frac{\partial u_x}{\partial y} = 0$, while at the sides of Ω we impose the periodic boundary conditions.

4. Numerical solution

Let a two-dimensional computational domain be uniformly partitioned with spacing h. The cell center is located at $(x_i, y_j) = ((i - 0.5)h, (j - 0.5)h)$ for $i = 1, \ldots, N_x$ and $j = 1, \ldots, N_y$, and N_x and N_y are the numbers of cells in the x- and y-directions, respectively.
Cell vertices are located at $\left(X_{i+\frac{1}{2}}, Y_{j+\frac{1}{2}} \right) = \left(ih, jh \right)$. Pressures and vector-valued phase-fields are stored at cell centers, and velocities are stored at cell faces [71]. Let Δt be the dimensionless time step and n be the time step index. At the beginning of each time step, given u^n and c^n, we want to find u^{n+1}, c^{n+1}, and p^{n+1} that solve the following discrete equations: for $k = 1, 2, \ldots, N - 1$,

$$
\rho \frac{u^{n+1} - u^n}{\Delta t} = -\nabla_d p^{n+1} + \frac{1}{Re} \nabla \cdot \left[\eta^c \left(\nabla_d u^n + (\nabla_d u^n)^T \right) \right]
$$

$$
+ SF^n + \frac{\rho^n}{Fr} \mathbf{g} - \rho^n \left(u \cdot \nabla_d u \right)^n.
$$

$$
\nabla_d \cdot u^{n+1} = 0
$$

$$
\frac{c_{k+1}^{n+1} - c_k^n}{\Delta t} = \frac{1}{Pe} \Delta_d \mu_{k+1}^{n+1} + \frac{1}{Pe} \Delta_d \left(\beta_k^n - \frac{1}{4} c_k^n \right)
$$

$$
- \nabla_d \cdot \left(c_k u^n \right),
$$

where the convective term, $\left(u \cdot \nabla_d u \right)^n$, is computed using an up-wind scheme [72]. The following pressure Poisson equation is then solved by a linear multigrid method [73] to obtain the pressure needed to enforce incompressibility:

$$
\nabla_d \cdot \left(\frac{1}{\rho^n} \nabla p^{n+1} \right) = \frac{1}{\Delta t} \nabla_d \cdot \tilde{u}.
$$

Then we obtain the divergence-free velocity field: $u^{n+1} = \tilde{u} - \frac{\nabla^2}{\rho^n} \nabla p^{n+1}$.

Step 3. Update the phase-field c_k^n to c_k^{n+1} for $k = 1, 2, \ldots, N - 1$. In order to solve the N-component CH system (14) and (15) in a decoupled way (this allows us to reduce the CPU time and memory requirements), we use the recently developed practically unconditionally stable scheme [44]. Note that, for mass conservation, we use a conservative discretization of the convective part of the phase-field equation (14):

$$
\left[(c_k u)_x + (c_k v)_y \right]^{n}_{ij} = \frac{u^{n+1}_{i+\frac{1}{2},j} - u^{n+1}_{i-\frac{1}{2},j}}{2h} (c_{k,i+1,j}^{n} + c_{k,i-1,j}^{n})
$$

$$
- \frac{v^{n+1}_{i,j+\frac{1}{2}} (c_{k,i,j+1}^{n} + c_{k,i,j-1}^{n}) - v^{n+1}_{i,j-\frac{1}{2}} (c_{k,i,j}^{n} + c_{k,i,j-1}^{n})}{2h}.
$$

This completes the single time-step process.

5. Numerical experiments

In this section, we describe a number of numerical experiments for two- and three-component fluids in two dimensions. In our numerical experiments, the fluid viscosities are matched and we define the function $f(x, y; a, b)$ as $f(x, y; a, b) := \frac{\sin((a + b)x)}{(2 \sqrt{b})}$ for simplicity of notation.

5.1. Linear growth rate for the Kelvin–Helmholtz instability of two-component fluids

The two-fluid system can be perturbed by applying a sinuousoidal disturbance on the fluid–fluid interface in the form of

$$
A = A_0 e^{ix+\epsilon t},
$$

where ϵ is the wave number. When both gravitational and surface tension forces are present, it is found that [74]

$$
n = -ik \frac{\rho_1 U_1 + \rho_2 U_2}{\rho_1 + \rho_2}
$$

$$
\pm \sqrt{\frac{k^2 \rho_1 \rho_2 (U_1 - U_2)}{(\rho_1 + \rho_2)^2} - \frac{k g (\rho_2 - \rho_1)}{\rho_1 + \rho_2}}.
$$

The real and imaginary parts of n are the linear growth rate $\gamma = \text{Re}(n)$ and frequency $\omega = -\text{Im}(n)$, respectively.

In order to calculate the numerical growth rate at different density ratio $\gamma = \rho_1 / \rho_2$, we take the initial conditions as

$$
c(x, y, 0) = 0.5 \left(1 + \left(\frac{x}{2}, 0, 0 \right) \right),
$$

$$
u(x, y, 0) = l(x, y; 2, 0.5),
$$

on the domain $\Omega \in [-1, 1] \times [0, 1]$. Here, we use $h = 1/256$, $\Delta t = 0.064h$, $\epsilon = 0.02$, $Pe = 10/\epsilon$, and $Re = 5000$. In this test, we let $g = \sigma = 0$. Therefore, the analytical non-dimensional growth rate γ_c can be written as

$$
\gamma_c = 4 \pi \frac{\sqrt{r}}{1 + r}.
$$

For numerical investigation, the numerical growth rate γ_n is calculated in the form of [28]

$$
\gamma_n = \frac{A(t)/A_0 - 1}{t}.
$$

In Fig. 2, we compare the results from analysis and simulation at different density ratio r. As shown in Fig. 2, the simulation results agree well with the analytical results.

5.2. Kelvin–Helmholtz instability of two-component fluids

We here consider the KH instability of two-component fluids. The initial conditions are

$$
c(x, y, 0) = 0.5 \left(1 + l(x, y; 2, 0.5) \right),
$$

$$
u(x, y, 0) = l(x, y; 2, 0.5),
$$

$$
v(x, y, 0) = 0
$$
Early in the dynamics, the flow sweeps the initial interfacial vorticity into the center (Fig. 4), and the heavier and lighter fluids move in the positive and negative vertical directions, respectively, as a result, both fluids penetrate each other. As vorticity accumulates at the center, the interface begins to steepen and the height of the instability gets larger. At late time, roll-up follows and the interface evolves into a spiral with a "cat's eye" shape. The dynamics of the rolling interface is consistent with those obtained in two-dimensional simulations using immersed boundary type methods [22,23] and a multiple-relaxation-time lattice Boltzmann method [32].

Next, we take the same initial conditions and parameter values used to create Fig. 3 except for ϵ to investigate the effect of ϵ on the interface evolution. Fig. 5(a)-(c) show snapshots of the phase-field at dimensionless time $t = 1$ for $\epsilon = 0.01/\sqrt{2}, 0.02/\sqrt{2},$ and $0.005/\sqrt{2}$, respectively. $\epsilon = 0.02/\sqrt{2}$ is relatively large (P_e is small), and the diffusion term in the phase-field equation is dominant (Fig. 5(a)). Ideally, we want to minimize the diffusion effect of the phase-field, because we are primarily interested in the hydrodynamics of the multiphase system. Next, let us consider the other case. $\epsilon = 0.005/\sqrt{2}$ is relatively small (P_e is large), and the advection term in the phase-field equation is dominant. This implies that the interface is locally out of equilibrium. In Fig. 5(c), it can clearly be observed that the interfacial transition region is
In order to investigate the effect of inclusion of extra layers on the growth rate for the KH instability, we consider the three-component fluids with the following initial conditions:

\[
\begin{align*}
n(x, y, 0) &= 0.5 (1 + \cos(y; 2, 2/3)), \\
n(x, y, 0) &= 0.5 (1 + \cos(y; -2, 1/3)) - n(x, y, 0), \\
u(x, y, 0) &= 0.5 (1 + u(x, y; 2, 2/3) - u(x, y; -2, 1/3)), \\
u(x, y, 0) &= 0
\end{align*}
\]

on the domain \(\Omega = [0, 1] \times [0, 1] \). Here, we use \(h = 1/256, \Delta t = 0.064h, \epsilon = 0.02, \text{Pe} = 10/\epsilon, \text{Re} = 5000, \) and \(\rho_1 : \rho_2 : \rho_3 = 1 : 1 : 1 \). In this test, the gravity and surface tension are neglected.

5.3. Comparison between the Kelvin–Helmholtz instability of two- and three-component fluids

In this paper, we will deal mainly with three-component fluids (in Section 5.1, we will also deal with four- and five-component fluids). For two-component fluids, we plot gray-scale-filled contours with several levels to show some mixing between the fluids (see Figs. 3 and 5). However, for three-component fluids, we plot filled contours at only one level for each fluid to clearly recognize the interface evolution of three-component fluids. In Figs. 8 and 10–15, the fluids 1, 2, and 3 are represented by gray, white, and black colors, respectively. The color contrast of each fluid is obtained by shifting the value of the phase-field variable by adding a constant and by taking the contour of each different level. The following MATLAB code was used to create the figure:

```matlab
load advection
clear all; close all; clc; hold on;
figure
contourf(C1+1,[1.5 1.5]); contourf(C2+2,[2.5 2.5]); contourf(C3, [0.5 0.5]);
```

Fig. 7 shows the interfaces of two- and three-component fluids. Dashed line represents the interface (shifted up to overlap) in Fig. 5 when the density ratio is equal to 1. Solid lines represent the interfaces of three-component fluids. In Section 5.1, we observed that the numerical growth rate is 6.2019 when the density ratio is equal to 1. However, in the case of three-component fluids, the upper and lower interfaces are influenced by each other. Thus, the numerical growth rates of upper and lower interfaces are 5.0610 and 4.8932, respectively. From this result, we see that the inclusion of extra layers can alter the growth rate for the KH instability.

5.4. Kelvin–Helmholtz instability of three-component fluids

In the rest of this paper, we will deal mainly with three-component fluids (in Section 5.1, we will also deal with four- and five-component fluids). For two-component fluids, we plot gray-scale-filled contours with several levels to show some mixing between the fluids (see Figs. 3 and 5). However, for three-component fluids, we plot filled contours at only one level for each fluid to clearly recognize the interface evolution of three-component fluids. In Figs. 8 and 10–15, the fluids 1, 2, and 3 are represented by gray, white, and black colors, respectively. The color contrast of each fluid is obtained by shifting the value of the phase-field variable by adding a constant and by taking the contour of each different level. The following MATLAB code was used to create the figure:

```matlab
load advection
clear all; close all; clc; hold on;
figure
contourf(C1+1,[1.5 1.5]); contourf(C2+2,[2.5 2.5]); contourf(C3, [0.5 0.5]);
```
In order to model the KH instability of three-component fluids, we take the initial conditions as
\begin{align}
 c_1(x, y, 0) &= 0.5 \left(1 + l(x, y; 4, 2/3)\right), \quad (16) \\
 c_2(x, y, 0) &= 0.5 \left(1 + l(x, y; 4, 1/3)\right) - c_1(x, y, 0), \quad (17) \\
 u(x, y, 0) &= 1 + l(x, y; 4, 2/3) - l(x, y; 4, 1/3), \quad (18) \\
 v(x, y, 0) &= 0 \quad (19)
\end{align}
on the domain \(\Omega = [0, 1] \times [0, 1] \). Here, we use \(h = 1/256 \), \(\Delta t = 0.128h, \epsilon = 0.006/\sqrt{2} \), and \(\text{Pe} = 10/\epsilon \). The remaining parameter values are \(\rho_1 : \rho_2 : \rho_3 = 0.98 : 0.99 : 1 \), \(\text{Re} = 5000 \), and \(\text{Fr} = 1 \). In this test, the surface tension is neglected. Fig. 8 shows the evolution of the phase-field with two-mode sinusoidal interface perturbations.

At each interface (fluid 1–fluid 2 and fluid 2–fluid 3), vorticity accumulates in the billow cores by advecting away from the braid centers (the braid refers to a thin tilted interface formed in the region between billow cores, see Fig. 9). This accumulation of vorticity results in the formation of thin braids and cores of vorticity. At \(t = 0.8 \), the billows are close to their saturation state, where the braids are thinnest and the cores have maximum strength. After passing the saturation state, the billow height and core vorticity concentration relax back. Note that, due to the difference in the direction of the horizontal velocity of the upper (or lower) layer of each interface, the cores of vorticity at the interface between fluids 2 and 3 are more moved to the left than those at the interface between fluids 1 and 2.

5.5. Effect of Weber number

In order to examine the effect of surface tension on the interface evolution, we take the same initial conditions (Eqs. (16)–(19)) and parameter values used to create Fig. 8 except for the Weber number. Fig. 10(a)–(c) show snapshots of the phase-field at dimensionless time \(t = 0.8 \) for \(\text{We}_{ij} = 1000, 100, \) and 10, respectively. At a sufficiently large Weber number \(\text{We}_{ij} = 1000 \), the elongated interface rolls up by following the evolution of the flow. At \(\text{We}_{ij} = 100 \), surface tension retards roll-up of the elongated interface and the interfacial ends are blunt due to the smoothing effect of surface tension. When surface tension becomes much stronger \(\text{We}_{ij} = 10 \), the interface roll-up is completely suppressed.
In order to examine the effect of forcing on the interface evolution, we take the initial condition in Eqs. (16) and (17) and the following two initial conditions:

\[
\begin{align*}
 u(x, y, 0) &= 1 + 0.505(l(x, y; 4, 2/3) - l(x, y; 4, 1/3)), \quad (20) \\
 u(x, y, 0) &= 1 + 1.5(l(x, y; 4, 2/3) - l(x, y; 4, 1/3)), \quad (21)
\end{align*}
\]

on the domain \(\Omega = [0, 1] \times [0, 1] \). The differences in initial horizontal velocities of fluids 1 and 2 (or fluids 2 and 3) are 1.01, 2, and 3 for Eqs. (20), (18), and (21), respectively. In this test, we take the same parameter values used to create Fig. 8. Fig. 12(a)–(c) show snapshots of the phase-field at dimensionless time \(t = 0.7 \) for the initial horizontal velocities in Eqs. (20), (18), and (21), respectively. As we can see in Fig. 12, the interface rolls up more as the initial horizontal velocity difference gets larger.

5.8. Effect of forcing

In order to examine the effect of forcing on the interface evolution, for the phase-field we take the initial condition in Eqs. (16) and (17) and the following two initial conditions:

\[
\begin{align*}
 c_1(x, y, 0) &= 0.5 \left[1 + \tanh \left(\frac{y - 2/3 - 0.02 \sin(4\pi x)}{2\sqrt{2}\epsilon} \right) \right] \quad (22) \\
 c_2(x, y, 0) &= 0.5 \left[1 + \tanh \left(\frac{y - 1/3 - 0.02 \sin(4\pi x)}{2\sqrt{2}\epsilon} \right) - c_1(x, y, 0) \right] \quad (23)
\end{align*}
\]

and

\[
\begin{align*}
 c_1(x, y, 0) &= 0.5 \left[1 + \tanh \left(\frac{y - 2/3 - 0.05 \sin(4\pi x)}{2\sqrt{2}\epsilon} \right) \right] \quad (24) \\
 c_2(x, y, 0) &= 0.5 \left[1 + \tanh \left(\frac{y - 1/3 - 0.05 \sin(4\pi x)}{2\sqrt{2}\epsilon} \right) - c_1(x, y, 0) \right] \quad (25)
\end{align*}
\]
on the domain $\Omega = [0, 1] \times [0, 1]$. The initial wave amplitudes, A_0, are 0.01, 0.02, and 0.05 for Eqs. (16) and (17), (22) and (23), and (24) and (25), respectively. In this test, we take the same parameter values used to create Fig. 8. Note that the height of the billow, H_b, is defined as the vertical distance between the highest and lowest points of the braid (see Fig. 13(a)). Fig. 13(b)–(d) show snapshots of the phase-field at dimensionless time $t = 0.8$ for $A_0 = 0.01$, 0.02, and 0.05, respectively. For each A_0, the time evolution of the billow height is shown in Fig. 13(e). As we can see in Fig. 13, the billow height reaches its maximum more slowly as the initial wave amplitude gets smaller.

5.9. Effect of non-monotonic density variation

We here investigate a case where the density variation is non-monotonic. The initial condition for the phase-field is same as in Eqs. (16) and (17), and the same parameter values used to create Fig. 8 except for the density ratio are chosen. We take the density ratio as $\rho_1 : \rho_2 : \rho_3 = 1/2 : 1/6 : 1$ and the initial velocity as $u(x, y, 0) = 0.7 + 0.25l(x, y; 4, 2/3) - 0.55l(x, y; 4, 1/3)$, $v(x, y, 0) = 0$ to see the effect of non-monotonic density variation more clearly. Fig. 14 shows the evolution of the phase-field with non-monotonic density variation. Due to the given density variation, both Rayleigh–Taylor and KH instabilities are developed at the interface between fluids 1 and 2, whereas at the interface between fluids 2 and 3, the KH instability is suppressed. As a result, one interface becomes stabilized and the other one becomes destabilized as time goes by.

5.10. Simulation of the billowing cloud formation

The KH instability of multi-component fluids can be observed in a wide variety of natural situations. A classic example is the spectacular billowing cloud formation in the lower atmosphere (see Fig. 15(a)). In order to simulate this natural phenomenon, we take the initial conditions as

- $c_1(x, y, 0) = 0.5 (1 + l(x, y; 2, 4/7))$
- $c_2(x, y, 0) = 0.5 (1 + l(x, y; 2, 2.5/7)) - c_1(x, y, 0)$
- $u(x, y, 0) = -0.5 \tanh \left(y - 4/7 - \delta(x) / (2\sqrt{2}\epsilon) \right)$
- $v(x, y, 0) = 0$

on the domain $\Omega = [0, 7] \times [0, 1]$. The function $\delta(x)$ is defined as $\delta(x) = \sum_{i=1}^{6} [H(x - p_i) - H(x - p_{i+1})] q_i \sin[2\pi(x - p_i) / (p_{i+1} - p_i)]$, where $H(x)$ is the heaviside function and $p_1 = 0$, $p_2 = 1.16$, $p_3 = 2.43$, $p_4 = 3.55$, $p_5 = 4.71$, $p_6 = 5.78$, $p_7 = 7$, $q_1 = 0.011$, $q_2 = 0.012$, $q_3 = 0.009$, $q_4 = 0.011$, $q_5 = 0.01$, $q_6 = 0.008$. These values are chosen by trial and error to achieve a resemblance to the photograph in Fig. 15(a). Here, we use $\epsilon = 1/64$, $\Delta t = 0.128\epsilon$, $\epsilon = 0.006\sqrt{2}$, and $Pe = 1/\epsilon$. The remaining parameter values are $p_1 : p_2 : p_3 = 0.98 : 0.99 : 1$, $Re = 50000$, $Fr = 0.1$, and $We_{12} = We_{13} = We_{23} = 1000$. Fig. 15(b)–(e) show the evolution of the phase-field.

When two-component fluids are considered to simulate the billowing cloud formation, i.e., we consider, in Fig. 15(b), that the top and bottom layers consist of one fluid and the middle layer is another fluid, then gravity effect becomes dominant since the heavier fluid is superposed over the lighter fluid. However, with three-component fluids of different densities which are gradually increased toward the gravitational direction, we can simulate the billowing cloud formation as we can see in Fig. 15(b)–(e). In this simulation, the details of the real flow (e.g., the asymmetry in the roll-up and the self-interaction of the shear layer) are well captured.
Fig. 14. Evolution of the phase-field with non-monotonic density variation at dimensionless times (a) \(t = 0 \), (b) \(t = 1 \), (c) \(t = 1.5 \), and (d) \(t = 2 \).

Fig. 15. Simulation of the billowing cloud formation: (a) photograph of KH billows in the atmosphere (this is available at: http://www.pinterest.com/timbrice/kelvin/T1/ndashhelmholtz-clouds/) and (b)--(e) numerical results of the KH instability of three-component fluids with density contrast at dimensionless times (b) \(t = 0 \), (c) \(t = 2 \), (d) \(t = 3.3 \), and (e) \(t = 3.6 \).

Table 1: CPU time (s) for \(N \)-layer flow during 1600 time steps.

<table>
<thead>
<tr>
<th>(N)</th>
<th>CPU time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1206.749</td>
</tr>
<tr>
<td>3</td>
<td>2611.610</td>
</tr>
<tr>
<td>4</td>
<td>3895.531</td>
</tr>
<tr>
<td>5</td>
<td>5134.110</td>
</tr>
</tbody>
</table>

5.11. Efficiency of the numerical algorithm

With the numerical algorithm, we can solve the \(N \)-component CH system in a decoupled way, i.e., we only solve the binary CH equation \(N - 1 \) times to solve the system. In order to show the efficiency of the numerical algorithm, we consider the KH instability in \(N \)-layer flow. For \(N = 2, 3, 4, 5 \), the initial conditions are

\[
\begin{align*}
 c_1(x, y, 0) &= 0.5 \left(1 + l(x, y; 2, (N - 1)/N) \right), \\
 c_k(x, y, 0) &= 0.5 \left(l(x, y; 2, (N - k)/N) - l(x, y; 2, (N - k + 1)/N) \right) \quad \text{for } k = 1, 2, \ldots, N - 1, \\
 u(x, y, 0) &= \text{mod}(N, 2) + \sum_{k=1}^{N-1} (-1)^{k+1} l(x, y; 2, (N - k)/N), \\
 v(x, y, 0) &= 0
\end{align*}
\]

on the domain \(\Omega = [0, 1] \times [0, 1] \). Here, we use \(h = 1/256 \), \(\Delta t = 0.128h \), \(\epsilon = 0.006/\sqrt{2} \), and \(Pe = 10/\epsilon \). The remaining parameter values are \(\rho_1 : \rho_2 : \cdots : \rho_N = (1 - 0.01(N - 1)) : (1 - 0.01(N - 2)) : \cdots : 1 \), \(Re = 5000 \), and \(Fr = 1 \). In this test, the surface tension is neglected. Simulations are performed on a 3.2 GHz Intel Core i5 CPU with 4 GB of RAM. Table 1 provides the CPU time (in seconds) during 1600 time steps for each number of layers. It can be seen that the CPU time increases almost linearly with the number of layers. Fig. 16 shows snapshots of the phase-field at dimensionless time \(t = 0.8 \) for \(N \)-layer flow.

6. Conclusions

The KH instability of multi-component (more than two) incompressible and immiscible fluids was studied numerically using a phase-field model. The instability was governed by the modified Navier–Stokes equations and the multi-component convective CH equations. A finite difference method was used to discretize the governing system. To solve the equations efficiently and accurately, we employed the Chorin’s projection method for the modified Navier–Stokes equations and the recently developed practically unconditionally stable method for the multi-component CH equations. The algorithm was validated by simulating the KH instability of two-component fluids. The results

Fig. 16. Snapshots of the phase-field at dimensionless time \(t = 0.8 \) for (a) 2-, (b) 3-, (c) 4-, and (d) 5-layer flows.
of the present study for two-component fluids were consistent with previous results. Using the validated code, we investigated the effects of surface tension, density ratio, magnitude of velocity difference, and forcing on the KH instability of three-component fluids. It was shown that increasing the surface tension or the density ratio reduces the growth of the KH instability. Note that the surface tension may destabilize the short-waves. But, in our view, investigating that numerically is a nontrivial work. Therefore, we will consider this issue in future work. And it was also observed that as the initial horizontal velocity difference gets larger, the interface rolls up more. We also found that the billow height reaches its maximum more slowly as the initial wave amplitude gets smaller. And, for the linear growth rate for the KH instability of two-component fluids, the simulation results agreed well with the analytical results. From comparison between the numerical growth rate of two- and three-component fluids, we observed that the inclusion of extra layers can alter the growth rate for the KH instability. Finally, we simulated the billowing cloud formation for one set of parameters. With our multi-component method, the asymmetry in the roll-up and the self-interaction of the shear layer were well captured.

Acknowledgments

The first author (H.G. Lee) was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2009-0093827). The authors thank the reviewers for the constructive and helpful comments on the revision of this article.

References

87