Let Q be the group of rational numbers under addition and let Q^* be the group of nonzero rational numbers under multiplication. In Q, list the elements in $<\frac{1}{2}>$. In Q^*, list the elements in $<\frac{1}{2}>$.

$<\frac{1}{2}> = \{\ldots, -3\frac{1}{2}, -2\frac{1}{2}, -1\frac{1}{2}, 0, 1\frac{1}{2}, 2\frac{1}{2}, 3\frac{1}{2}, \ldots\}$ in Q

$<\frac{1}{2}> = \{\ldots, (\frac{1}{2})^{-3}, (\frac{1}{2})^{-2}, (\frac{1}{2})^{-1}, (\frac{1}{2})^0, (\frac{1}{2})^1, (\frac{1}{2})^2, (\frac{1}{2})^3, \ldots\}$ in Q^*

Prove that in any group, an element and its inverse have the same order.

Assume that G is a group and $a \in G$. Then we separate the discussion by two parts case, 1: finite group and case 2: infinite group. Let’s see case 1 first. a has finite order (say) n. It means that $a^n = e$

$$a^n = e = (a^n \cdot a^{-n}) = a^n (a^{-1})^n$$

It gives us that a^{-1} have at most order n. If we let a^{-1} have k order such that $k < n$, then
\[e = e^k = (a^k * a^{-k}) = a^k(a^{-1})^k = a^k \]

But we know that \(k \) cannot be the order of \(a \). Hence \(|a^{-1}| = n \).

Next, see infinite order case. Let \(a \) has infinite order and \(a^{-1} \) dose not, then we can say that \(|a^{-1}| = n \). Moveover finite inverse of \(a^{-1} \) that is \((a^{-1})^{-1} \) has same number of order. But this cannot happen. Thus \(a^{-1} \) has infinite order.

Page67:6

Let \(x \) belong to a group. If \(x^2 \neq e \) and \(x^6 = e \), prove that \(x^4 \neq e \) and \(x^5 \neq e \).

What can we say about the order of \(x \)?

Obviously, \(x \neq e \) because \(x^n = e \) for all \(x \in \mathbb{Z} \). Then we can determine that \(x^6 = e = x^4 \cdot x^2 = x^2 \) if \(x^4 = 2 \). Also \(x^6 = x^5 \cdot x = x = e \) if \(x^5 = e \). Those cases are not true so that \(x^4 \neq e \) and \(x^5 \neq e \). Further we can say \(x^3 = e \) and \(x^6 = e \). That’s, \(x \) has order of 3 either 6.

Page67:10

Prove that an Abelian group with two elements of order 2 must have a subgroup of order 4.

Let \(G \) be an Abelian group with distinct elements \(a, b \) such that \(a^2 = b^2 = e \). Then the set of \(H = \{e, a, b, ab\} \) has order 4 and it is the subgroup of \(G \) by Finite subgroup test.

Page67:12

Suppose that \(H \) is a proper subgroup of \(\mathbb{Z} \) under addition and \(H \) contains 18, 30, and 40. Determine \(H \).

As it stated, \(H \) is closed under addition, \(H \) must be linear combination of 18, 30, and 40. We know that \(gcd(18, 30, 40) = 2 \) so that \(2 = 18r + 30s + 40t \) for some integers \(r, s, \) and \(t \). This means that \(2 \in H \) but \(H \neq \mathbb{Z} \). That’s \(H = 2\mathbb{Z} \).

Page67:15

Let \(G \) be a group. Show that \(Z(G) = \cap_{a \in G} C(a) \).

Suppose \(x \in Z(G) \). Then \(x \) commutes with every \(a \in G \) and \(x \in C(a) \) for all \(a \in G \). This means that \(x \in \cap_{a \in G} C(a) \) and \(Z(G) \subseteq \cap_{a \in G} C(a) \).

Conversely, suppose \(x \in \cap_{a \in G} C(a) \), this implies that \(x \in C(a) = \{y \in G : ay = ya\} \) for all \(a \in G \) and \(x \) commutes with all \(a \in G \), i.e., \(x \in Z(g) \).

Page67:18

If \(a \) and \(b \) are distinct group elements, prove that either \(a^2 \neq b^2 \), or \(a^3 \neq b^3 \).

This problem requires us to prove that one \(a^2 \neq b^2 \) and if not, prove an-
other $a^3 \neq b^3$. We just need to prove one of the statements at least. (NOT mutually exclusive) Let’s see the $a^2 \neq b^2$. When it is true, then nothing to prove. But assume that $a^2 = b^2$ with distinct elements $a \neq b$. It goes like this. $a \neq b \rightarrow a^2 a \neq a^2 b \rightarrow a^3 \neq a^2 b$ since $a^2 = b^2$, $a^3 \neq b^2 b \rightarrow a^3 \neq b^3$.

2 Isomorphisms

Page132:2
Find Aut(\mathbb{Z})

Let $a \in$ Aut(\mathbb{Z}). Then, we can find two Automorphism; identity Automorphism and Automorphism with $a(n) = -n$. Note that \mathbb{Z} is a cyclic group since every nonzero integer can be written as a finite sum $1 + 1 + \cdots$ or $(-1) + (-1) + \cdots (-1)$ and any Automorphism (which including Isomorphisms) has a mapping from generators to generators. \mathbb{Z} is cyclic with 1, -1 two generators. Thus, $a(1) = \pm 1$. If $n \in \mathbb{Z}$, then $n = 1 \cdot n$ and $a(n) = a(1 \cdot n) = n \cdot a(1)$. We let $a(1) = 1$ then, it represents that identity Automorphism and $a(1) = -1$ for all $n \in \mathbb{Z}$ such that $a(a(n)) = -(-n) = n$ which is inverse of a as well as a one to one correspondence. Also we know that it preserve the operation $a(n + m) = -(n + m) = -n - m = a(n) + a(m)$ Automorphism such that $a(n) = -n$.

Page132:5
Show that $U(8)$ is isomorphic to $U(12)$.
We define isomorphism $\phi : U(8) \rightarrow U(12)$ as follows:

$$\phi(1) = 1, \phi(3) = 5, \phi(5) = 7, \phi(7) = 11.$$

The mapping ϕ is apparently one-to-one and onto, and the multiplication tables of $U(8)$ and $U(12)$ are described as belows That shows the ϕ preserves

<table>
<thead>
<tr>
<th>U(8)</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U(12)</th>
<th>1</th>
<th>5</th>
<th>7</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>11</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>
3 Cosets and Lagrange’s Theorem

Page148:2
Let $H = \{(1), (12)(34), (13)(24), (14)(23)\}$. Find the left cosets of H in S_4.

$|S_4| = 24$ and $|H| = 4$ then $|S_4|/|H| = 24/4 = 6$ by Lagrange’s Theorem.

Page148:8
Suppose that a has order 15. Find all of the left cosets of $<a^5>$ in $<a>$.

The cosets should be $<a^5>$, $a <a^5>$, $a^2 <a^5>$, $a^3 <a^5>$, $a^4 <a^5>$.

Page148:14
Suppose that K is a proper subgroup of H and H is a proper subgroup of G. If $|K| = 42$ and $|G| = 420$, what are the possible orders of H?

By Lagrange’s theorem, we know that only 2, 5 can be numbers satisfying that $|H| = 2 \cdot 42$, $5 \cdot 42$.

4 External direct products

Page165:2
Show that $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ has seven subgroups of order 2.

Every element of G has order a divisor of 2 but the identity of G. Thus, we need to count the number of subgroups. So, there are $|G| − 1 = 8 − 1 = 7$.

Page165:4
Show that $G \oplus H$ is Abelian if and only if G and H are Abelian.

(\rightarrow)
Let $a, c \in G$ and $b, d \in H$ then

$$(a, b)(c, d) = (c, d)(a, b)$$
$$(ac, bd) = (ca, db)$$

This implies that $ac = ca$, $bd = db$. Thus, H and G are commutative.

(\leftarrow)
Assume that G and H are Abelian then we just follow the above argument in reverse.
Prove or disprove that $\mathbb{Z} \oplus \mathbb{Z}$ is a cyclic group.

Let $(a, b) \in \mathbb{Z} \oplus \mathbb{Z}$ for $a, b \in \mathbb{Z}$. If we let $a, b \neq 1$ and be a generator $< (a, b) >$ then, $(a + 1, b)$ or $(a, b + 1)$ which belong to $\mathbb{Z} \oplus \mathbb{Z}$ but cannot be generated by $< (a, b) >$. So, $\mathbb{Z} \oplus \mathbb{Z}$ is not cyclic.

Is $\mathbb{Z}_3 \oplus \mathbb{Z}_9$ isomorphic to \mathbb{Z}_{27}? Why?

\mathbb{Z}_{27} contains an element of order 27 but $\mathbb{Z}_3 \oplus \mathbb{Z}_9$ have orders divisors of 9. Therefore it is not isomorphic.

5 Normal subgroups and Factor groups

Factor groups, set $G/H = \{aH|a \in G\}$ is a group.
requirement: group G, Normal subgroup H of G and group operation $(aH)(bH) = ab(H)$.

Let $G=\text{GL}(2,\mathbb{R})$ and let \mathbb{K} be a subgroup of \mathbb{R}^*. Prove that $H=\{A \in G|\det A \in K\}$ is a normal subgroup of G.

Let G be a group and $h \in H$
Need to show $\{ghg^{-1} \in H\}$ for all $g \in G$.This means the normality of H of G. (Normal subgroup test).
For all $x \in G$ and any $h \in H$ such that $\det (h) \in K$, $\det (ghg^{-1}) = \det (g) \det (h) \det (g^{-1}) = \det (g) \det (g^{-1}) \det (h) = \det (h) \in K$. In other words, $gHg^{-1} \subseteq H$

Prove that a factor group of a cyclic group is cyclic.

Let G/H and $< g >= G$ be the factor group and cyclic group. Then $G/H = \{g^kH|k \in \mathbb{Z}\}$. Since $< g >$ is cyclic and properties of normality, it can be expressed that $G/H = \{(gH)^k|k\mathbb{Z}\}$ This implies that $< gH >$ is also cyclic.

Prove that a factor group of an Abelian group is Abelian.

Let G be a Abelian group and normal group H. Assume that G/H is the
factor group and select a and b such that $a, b \in G/H$. To verify the Abelian, a operation is applied thus, $(aH)(bH) = abH$ by the property of the factor group. Proceed that $abH = baH$ since G is Abelian and $baH = (bH)(aH)$ for all a, b. Therefore, this is Abelian.

Page 191: 18
What is the order of the factor group $\mathbb{Z}_{60}/ <15>$?

The order of \mathbb{Z}_{60} is 60 and $<15>$ is 4 then the factor group of order is $\frac{60}{4} = 15$

Page 191: 21
Prove that an Abelian group of order 33 is cyclic.

Let’s say p divides the order of an Abelian group G then G has an element of order p. There will be 2 element say (a, b) such that $a^3 = e$ and $b^11 = e$ because $33 = 3 \times 11$. Now we know that $(ab)^3 = a^3b^3 \neq e$ and $(ab)^{11} = a^{11}b^11 = a^2 \neq e$ in Abelian group so that 2 orders exist. Thus, $<ab>$ generates the cyclic group G.

Page 191: 69
Let G be a group. If $H = \{g^2 | g \in G\}$ is a subgroup of G, prove that it is a normal subgroup of G.

Say $g_1 \in G$ and $h \in H$ such that $h = g^2$. Need to show $g_1Hg_1^{-1} \in G$. Rewrite $g_1hg_1^{-1} = g_1g^2g_1^{-1} = (g_1gg_1^{-1})(g_1gg_1^{-1}) = (g_1gg_1^{-1})^2 \in H$ since $g_1gg_1^{-1} \in G$.

6 Group homomorphisms

Page 210: 06
Let G be the group of all polynomials with real coefficients under addition. For each f in G, let f_f denote the antiderivative of f that passes through the point $(0, 0)$. Show that the mapping $f \rightarrow f_f$ from G to G is a homomorphism. What is the kernel of this mapping? Is this mapping a homomorphism if f_f denotes the antiderivative of f that passes through $(0, 1)$?

Consider the fact that f_f passes through $(0, 0)$. It represents that antiderivative of a constant term is zero and $\int f_1 + f_2 = \int f_1 + \int f_2$ for f_1 and $f_2 \in G$ under addition, (homomorphism). Zero is identity of G under addition and homomorphism transfers identity of G to \bar{G}. As stated,know that the constant term and identity of f_f both are zero. So, kernel of the group \bar{G} is 0. But if f_f passes through $(0, 1)$ then it is not homomorphism and this can be verified.
by identity of \(G \).

Page210:07

If \(\phi \) is a homomorphism from \(G \) to \(H \) and \(\sigma \) is a homomorphism from \(H \) to \(K \), show that \(\sigma \phi \) is a homomorphism from \(G \) to \(K \).

Let’s say \(p, q \in G \) then we see that \(\sigma(\phi(pq)) = \sigma(\phi(p)\phi(q)) \) since \(\phi \) is homomorphism. Similarly, \(\sigma(\phi(pq)) = \sigma(\phi(p)\phi(q)) = \sigma(\phi(p))\sigma(\phi(q)) \). This \(\phi \sigma \) is also a homomorphism.

Page210:46

Suppose that \(Z_{10} \) and \(Z_{15} \) are both homomorphic images of a finite group \(G \). What can be said about \(|G| \)?

Know that \(|G| \) is divisible by 10 and 15 then we can say that 30 is least common multiple of this.

7 Introduction to rings

Page240:17

Show that a ring that is cyclic under addition is commutative.

Goal: \(ab = ba \) note: multiplication denoted by \(ab \) for \(a, b \in R \)

According to the problem, let’s suppose that \(R \) is a cyclic ring under addition. There is a generator \(k \in \mathbb{Z} \) such that any \(a \in R \) and we can write the \(a \) as \(a = \pm(k + k + \cdot \cdot \cdot k) \) for some number(say \(m \) terms) of \(k \)’s, \(a = \pm m \cdot k \)

Suppose \(a, b \in R \) such that \(a = \pm m \cdot k \) and \(b = \pm n \cdot k \).

\[
ab = (\pm m \cdot k)b = \pm \left(\frac{k + k + \cdot \cdot \cdot k}{m \text{ terms}} \right)b = \pm \left((kb) + (kb) + \cdot \cdot \cdot + (kb) \right) = \pm m \cdot (kb).
\]

and

\[
k b = k(\pm n \cdot k) = \pm k \left(\frac{k + k + \cdot \cdot \cdot k}{n \text{ terms}} \right) = \pm \left(k^2 + k^2 + \cdot \cdot \cdot + k^2 \right) = \pm n \cdot k^2.
\]

we got

\[
ab = \pm m \cdot (kb) = \pm m \cdot (\pm nk^2) = \pm (mn) \cdot k^2,
\]

\[
ba = (\pm n \cdot k)a = \pm n \cdot (ka) = \pm b \cdot (k(\pm m \cdot k)) = \pm n \cdot (m \cdot k^2) = \pm (mn) \cdot k^2.
\]

\(m, n \in \mathbb{Z}, \ mn = nm \), which proves \(ab = ba \)
Show that a unit of a ring divides every element of the ring.

Let a be a unit with a^{-1} and $r \in R$. Then $r = a \cdot a^{-1} \cdot r$ which implies that a divides r.

Let n be an integer greater than 1. In a ring in which $x^n = x$ for all x, show that $ab = 0$ implies $ba = 0$.

Prove that the mapping $x \to x^6$ from $C^* \to C^*$ is a homomorphism. What is the kernel?

Suppose that R is a ring with unity 1 and a is an element of R such that $a^2 = 1$. Let $S = \{ara | r \in R\}$. Prove that S is a subring of R. Does S contain 1?

Let R be a ring. Prove that $a^2 - b^2 = (a + b)(a - b)$ for all a, b in R if and only if R is commutative.

(\rightarrow)
\[a^2 - b^2 = (a + b)(a - b) \]
\[a^2 - b^2 = (a + b)a - (a + b)b \quad \text{by definition of ring} \]
\[a^2 - b^2 = a^2 + ba - ab - b^2 \]
\[a^2 - b^2 - a^2 + b^2 = ba - ab \]
\[0 = ba - ab \]
\[ab = ba \quad \text{Thus, } R \text{ is commutative.} \]

\((\Leftarrow)\) Assume that \(R \) is commutative then

\[ab = ba \]
\[a^2 + ab - b^2 = a^2 + ba - b^2 \quad \text{add } a^2, \ b^2 \text{ to both sides} \]
\[a^2 - b^2 = a^2 - ab + ba - b^2 \quad R \text{ is the ring as we know.} \]
\[a^2 - b^2 = a(a - b) + b(a - b) \]
\[a^2 - b^2 = (a + b)(a - b) \]

8 Integral domains

Example8
\(Z \oplus Z \) is not an integral domain.

There are zero divisors. see \((1, 0) \cdot (0, 1) = (0, 0)\).

Page254:05
Show that every nonzero element of \(Z_n \) is a unit or a zero-divisor.

Suppose that \(x \in Z_n \) is not a zero-divisor. Then power\((x^k \) just say k) of \(x \) is not a zero-divisor, too. if not there is a \(y \in Z_n \) such that \(x^k \cdot y = x \cdot x^{k-1}y = 0 \). \(x \) is turned out to be a zero-divisor.

Invertibility of elements is only that is left to prove. Let’s consider the set of \(\{x^k | k \in Z\} \). Since \(Z_n \) is finite, we think of \(x^k \) and \(x^j \) as \(x^k = x^j \)

\[x^k = x^j = 0 \]
\[x^j - x^k = x^k(x^{j-k} - 1) = 0 \]

And we know \(x^k \) is not a zero-divisor, \(x^{j-k} = 1 \) and the equation implies that \(x \cdot x^{j-k-1} = 1 \). Thus, \(x \) has the inverse \((x^{j-k-1}) \) of \(x \).
Give an example of a commutative ring without zero-divisors that is not an integral domain.

Even integers do.

Let \(a \) belong to a ring \(R \) with unity and suppose that \(a^n = 0 \) for some positive integer \(n \). Prove that \(1 - a \) has a multiplicative inverse in \(R \).

\[(1 - a)(1 + a + a^2 + \cdots + a^{n-1}) = 1 - a^n = 0\]

Show that the nilpotent elements of a commutative ring form a subring

goal: let \(S \) be the nilpotent elements of a commutative ring \(R \) then, show the \(S \) is under subtraction and multiplication.

Let \(a, b \in S \) and \(a^m = 0, b^n = 0 \) for certain integers (say \(m, n \))

First, we will deal with subtraction

\[(a - b)^{m+n} = \sum_{i=0}^{m+n} M = \binom{m+n}{i} (-1)^i a^{m+n-i} b^i, \quad a^{m+n-i} b^i = 0 \]

for \(0 \leq i \leq m + n \)

Thus, \((a - b)^{m+n} = 0 \) that means \(a - b \in S \).

Second, multiplication.

\((ab)^m = a^m b^m = 0 \cdot b^m = 0 \) that means \(ab \in S \).

Find a zero-divisor in \(\mathbb{Z}_5[i] = \{ a + bi | a, b \in \mathbb{Z}_5 \} \).

\((2 + i)(2 - i) = 4 + 1 = 0\), where \(2 + i \) and \(2 - i \) are zero divisors.

Suppose that \(a \) and \(b \) belong to an integral domain.

a. If \(a^5 = b^5 \) and \(a^3 = b^3 \), prove that \(a = b \).

b. If \(a^m = b^m \) and \(a^n = b^n \), where \(m \) and \(n \) are positive integers that are relatively prime, prove that \(a = b \).

a. Say \(b = 0 \), then \(a^3 = 0 \) since no zero divisors. Again, \(a^3 = 0 \) implies that \(a = 0 \) and \(a^2 = 0 \). It turned out that \(a = 0 \) in either case. Thus, \(a = b \)
If $b \neq 0$, $a^3 = b^3 \Rightarrow a^6 = b^6 \Rightarrow aa^5 = b^6 \Rightarrow ab^5 = b^6 \Rightarrow a = b$

a. If $b = 0$, then $a = 0$

b. If $b \neq 0$, Since m and n are relatively prime, there are integers q and r such that $mq + nr = 1$.

$a^m = b^m \rightarrow a^{mq} = b^{mq}$

$a^n = b^n \rightarrow a^{nr} = b^{nr}$

$a^{mq}a^{nr} = b^{mq}b^{nr}$

$a^{mq+nr} = b^{mq+nr}$

$a = b$