The Essential Spectra of Toeplitz Operators
with Symbols in $H^\infty + C$

Boo Rim Choe and Young Joo Lee

Abstract. The essential spectra of Toeplitz operators acting on the L^p-Bergman spaces with continuous symbols have been computed by Zeng. We generalize Zeng’s result to symbols in $H^\infty + C$.

1. Introduction

Let B be the unit ball of the n-dimensional complex space \mathbb{C}^n. Let L^p denote the Lebesgue space on B endowed with volume measure. The Bergman space A^p ($1 < p < \infty$ is fixed throughout the paper) is then the closed subspace of L^p consisting of holomorphic functions. Let \mathcal{B} be the algebra of all bounded linear operators on A^p and \mathcal{K} be the two-sided compact ideal of \mathcal{B}. For an operator $T \in \mathcal{B}$ and a complex number λ, we say that $\lambda \in \sigma_e(T)$, the essential spectrum of T, if $(T - \lambda) + \mathcal{K}$ is not invertible in the Calkin algebra \mathcal{B}/\mathcal{K}. In other words, $\lambda \in \sigma_e(T)$ if and only if $T - \lambda$ is not Fredholm.

Let P denote the orthogonal projection from L^2 onto A^2. As is well-known, the projection P extends to a bounded projection taking L^p onto A^p which can be explicitly described in terms of integration against the Bergman kernel (see, for example, [3, Theorem 7.1.4]). For $u \in L^\infty$, the Toeplitz operator T_u acting on A^p with symbol u is defined by

$$T_u f = P(uf)$$

for $f \in A^p$. It is clear that $T_u \in \mathcal{B}$.

1991 Mathematics Subject Classification. Primary 47B38, 32A37.
Key words and phrases. Essential spectrum, Toeplitz operators, Bergman space.

Both authors were in part supported by the KOSEF and the first author were in part supported by the GARC

Typeset by \LaTeX
In [5] Zeng has considered a symbol u continuous up to the boundary and computed the essential spectrum of T_u (Zeng actually worked on the unit disk, but the same argument applies to the ball and, in addition, the argument can now be much simplified by a result of Zhu on the compact Hankel operators mentioned in the next section): $\sigma_e(T_u) = u(S)$ where S denotes the unit sphere, the boundary of B. The purpose of the present paper is to generalize this result to symbols in $H^\infty + C$. Here, H^∞ denotes the class of all bounded holomorphic functions on B and C denotes the class of all continuous functions on \bar{B}. We prove

Theorem 1. Let $u \in H^\infty + C$. Then $\sigma_e(T_u)$ is connected and $\sigma_e(T_u) = \tilde{u}(\beta B \setminus B)$.

The notation βB denotes the Stone-Cech compactification of B and \tilde{u} denotes the unique continuous extension of u on βB.

Acknowledgement. The referee informed us that a similar result was announced without proof by Cao and Sun [1]. We would like to thank the referee for drawing our attention to the earlier work of Cao and Sun.

2. Proof

We will push the argument of Zeng [5] a little bit further to prove Theorem 1. The following are the ball versions of [5, Theorem 2.4] and [5, Theorem 4.3].

Lemma 2. For $u \in C$, we have $T_u \in K$ if and only if $u|_S = 0$. □

Lemma 3. For $u \in C$ and $v \in L^\infty$, we have $T_v T_u - T_{uv} \in K$. □

Remark. For $u \in L^\infty$, the Hankel operator H_u acting on A^p with symbol u is defined by $H_u f = (I - P)(uf)$ for $f \in A^p$. It is also clear that $H_u \in \mathcal{B}$ and $H_u = 0$ for $u \in H^\infty$. Moreover, it is now known (see [6, Corollary 24]) that for $u \in H^\infty$, we have $H_u \in \mathcal{K}$ if and only if u is in the little Bloch space (for informations on this space see [4]). In particular, we have $H_{\bar{u}} \in \mathcal{K}$ for $u \in H^\infty \cap C$. Since holomorphic and antiholomorphic monomials span
a uniformly dense subset of C, we have $H_u \in K$ for $u \in C$. This leads to a simple proof of [5, Theorem 4.3].

Lemma 4. For $u \in H^\infty + C$ and $v \in L^\infty$, we have $T_v T_u - T_{uv} \in K$. Moreover, if $v \in H^\infty + C$ as well, then $T_u T_v - T_v T_u \in K$.

Proof. Let us write $u = f + \psi$ for some $f \in H^\infty$ and $\psi \in C$. Note that $T_u = T_f + T_\psi$ and $T_v T_f = T_v f$ because $f \in H^\infty$. A simple computation gives $T_v T_u - T_{uv} = T_v T_\psi - T_{v \psi}$, which is compact by Lemma 3, as desired. Moreover, if we have $v \in H^\infty + C$ as well, then $T_u T_v - T_v T_u = (T_u T_v - T_{uv}) - (T_v T_u - T_{vu})$ is also compact by the previous case. This completes the proof. □

To each $u \in H^\infty + C$, there corresponds a boundary function u^* defined by

$$u^*(\zeta) = \lim_{r \to 1} u(r \zeta)$$

at almost all points $\zeta \in S$ with respect to surface area measure on S. As is well-known, the map $u \to u^*$ is an isometric isomorphism of H^∞ onto the closed subalgebra of $L^\infty(S)$. Let us write $H^\infty(S)$ for this subalgebra. Then the space $H^\infty(S) + C(S)$ is a closed subalgebra of $L^\infty(S)$. See [3, Theorem 6.5.5]. Clearly, the map $u \to u^*$ is a norm-decreasing algebra homomorphism of $H^\infty + C$ onto $H^\infty(S) + C(S)$. Thus we have a natural Banach algebra isomorphism

(1) \[[H^\infty + C]/Z \cong H^\infty(S) + C(S) \]

where Z denotes the set of all functions $u \in H^\infty + C$ such that $u^* = 0$.

Let T be the smallest closed algebra generated by all Toeplitz operators T_u with $u \in H^\infty + C$. It is clear that the set $\{T_u + K : u \in H^\infty + C\}$ is dense in T/K. Using the same methods as in the Hilbert space case $p = 2$ ([2, Lemma 4.1]), one can estimate the quotient norm $|||T_u + K|||$ of $T_u + K \in T/K$. More explicitly, we have

(2) \[\limsup_{|z| \to 1} |u(z)| \leq |||T_u + K||| \leq c \limsup_{|z| \to 1} |u(z)| \]
for $u \in H^{\infty} + C$ and for some constant $c = c(n, p)$ depending only on n and p (in fact c is the operator norm of the projection $P : L^p \rightarrow A^p$). At the same time, McDonald [2, Lemma 4.2] computed the essential sup-norm of u^* on S:

\begin{equation}
||u^*||_{\infty} = \limsup_{|z| \to 1} |u(z)|.
\end{equation}

for $u \in H^{\infty} + C$. Combining the above with (2), we see that

\begin{equation}
||u^*||_{\infty} \leq ||T_u + K|| \leq c||u^*||_{\infty}
\end{equation}

for $u \in H^{\infty} + C$. We remark in passing that the isomorphism in (1) is actually isometric by (3).

Let us now consider the map $\Lambda : H^{\infty}(S) + C(S) \to T/K$ defined by $\Lambda(u^*) = T_u + K$. To see that Λ is well-defined, suppose $u^* = v^*$ for $u, v \in H^{\infty} + C$. Then, by (3), $u - v$ has a continuous extension on \bar{B} with $u - v = 0$ on S. It follows that $T_{u - v} = T_u - T_v \in K$ by Lemma 2, or equivalently, $T_u + K = T_v + K$. By (4), the map Λ is bounded above and below. Since Λ is bounded below, its range is closed. Note that the range of Λ is dense by definition of T. Therefore the map Λ is onto. Moreover, the map Λ is an algebra homomorphism by Lemma 4. In summary we obtain from (1)

Lemma 5. The map $u + Z \to T_u + K$ defines an algebra isomorphism $[H^{\infty} + C]/Z \cong T/K$. \Box

Note that Z is precisely the space of functions continuous on \bar{B} and vanishing on S. This follows from (3).

Lemma 6. Let $u \in H^{\infty} + C$. Then the following statements are equivalent:

(a) $u + Z$ is invertible in $[H^{\infty} + C]/Z$.

(b) T_u is Fredholm.

(c) u is bounded away from 0 near S.

4
Proof. (a) \Rightarrow (b); By assumption and Lemma 5, $T_u + K$ is invertible in T/K, hence in B/K, as desired.

(b) \Rightarrow (c); This is proved in [2, Theorem 2.5] for $p = 2$. One can show by a similar argument that Lemmas 2.1, 2.2 and 2.3 in [2] are still available for general p. Thus this implication holds.

(c) \Rightarrow (a); By assumption and Corollary 4.5 of [2], one sees that u^* is invertible in $H^\infty(S) + C(S)$. This implication now follows from (1). This completes the proof. \square

We finally prove our main result.

Proof of Theorem 1. One can see from Lemmas 5 and 6 that $\lambda \in \sigma_e(T_u)$ if and only if $\lambda \in u(B \setminus rB)$ for every $0 < r < 1$. Hence

$$\sigma_e(T_u) = \bigcap_{0 < r < 1} u(B \setminus rB).$$

This shows that $\sigma_e(T_u)$ is the intersection of a nested sequence of compact connected sets and hence connected. Note that $\overline{u(B \setminus rB)} = \hat{u}(\beta B \setminus rB)$ by compactness of βB and continuity of \hat{u} on βB. It follows that

$$\sigma_e(T_u) = \bigcap_{0 < r < 1} \hat{u}(\beta B \setminus rB).$$

Now we show the right side of the above is equal to $\hat{u}(\beta B \setminus B)$. The inclusion $\hat{u}(\beta B \setminus B) \subset \bigcap_{0 < r < 1} \hat{u}(\beta B \setminus rB)$ is clear. Conversely, let $\lambda \in \bigcap_{0 < r < 1} \hat{u}(\beta B \setminus rB)$. Then $\lambda = \hat{u}(z_r)$ for some $z_r \in \beta B \setminus rB$ ($0 < r < 1$). Since βB is compact, one can choose a subsequence r_k for which z_{r_k} converges to z_0 for some $z_0 \in \beta B$. Moreover, since B is open in βB, we get $z_0 \in \beta B \setminus B$. Note that $\hat{u}(z_{r_k}) \to \hat{u}(z_0)$ by continuity of \hat{u} on βB. Since $\lambda = \hat{u}(z_{r_k})$ for each k, one obtains $\lambda = \hat{u}(z_0) \in \hat{u}((\beta B \setminus B).$ This shows the inclusion $\bigcap_{0 < r < 1} \hat{u}(\beta B \setminus rB) \subset \hat{u}(\beta B \setminus B)$ and the proof is complete. \square

As a simple consequence we recover Zeng’s result [5, Theorem 6.5] on the ball.

Corollary 7. Let $u \in C$. Then we have $\sigma_e(T_u) = u(S)$. \square
REFERENCES

Department of Mathematics
Korea University
Seoul 136-701, Korea

Department of Mathematics
Mokpo National University
Muan, Chonnam 534-729, Korea