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Abstract

A diffuse-interface model is considered for solving axisymmetric immiscible two-
phase flow with surface tension. The Navier-Stokes (NS) equations are modified by the
addition of a continuum forcing. The interface between the two fluids is considered as
the half level set of a mass concentration ¢, which is governed by the Cahn—Hilliard
(CH) equation—a fourth order, degenerate, nonlinear parabolic diffusion equation. In
this work, we develop a nonlinear multigrid method to solve the CH equation with
degenerate mobility and couple this to a projection method for the incompressible NS
equations. The diffuse-interface method can deal with topological transitions such as
breakup and coalescence smoothly without ad hoc ‘cut and connect’ or other artificial
procedures. We present results for Rayleigh’s capillary instability up to forming satellite
drops. The results agree well with the linear stability theory.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Axisymmetric free boundary problems have excellent approximations to a
number of important engineering, industrial and biomedical problems such as
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breakup of a liquid column surrounded by another fluid. One of the great
difficulties in the study of two immiscible fluid flows is presence of an unknown
interface. The interface changes and may undergo severe deformations such as
breakup and merging. The diffuse-interface model provides a natural way of
treating the topological changes of the interface. The diffuse-interface model is
a novel method for capturing the evolution of complex interfaces. To capture
evolution of complex interfaces, we will use the Navier—Stokes—Cahn-Hilliard
(NSCH) system [7]. In this NSCH model, a mass concentration field ¢(x, ¢) is
introduced to denote the mass ratio of one of the components in a heteroge-
neous mixture of two fluids (e.g., m; /m where m, is the mass of fluid 1, and m is
the total mass of the binary fluid in a representative volume V). The mass
concentration is coupled to the fluid motion through concentration dependent
density, viscosity, and surface tension force. And the resulting system couples
the Navier—Stokes equations to fourth order, degenerate, nonlinear parabolic
diffusion equation of Cahn—Hilliard type for the concentration. A review paper
of diffuse-interface model is given by Anderson et al. [§].

The basic idea is similar to a well-known level set method for incompressible
two-phase flows [3]. In this method, the level set function ¢(x, ) is defined as
follows:

>0, if xe fluid 1,
¢(x,)¢ =0, if x € I' (the interface between fluids),
<0, if xe fluid 2

and the evolution of ¢ is given by

09
—+4u-V¢ =0, 1
o TV (1)
where u is the fluid velocity. Therefore, the interface, I', is the zero level set of
¢. The surface tension force is calculated by ¢ and we want ¢ to be a distance
function near the interface. However, under the evolution (1) it will not nec-
essarily remain as such. So, we need to take a reinitialization step [3] to keep ¢
as a distance function near the interface.
In a diffuse-interface method, mass concentration field ¢(x, ¢) is governed by

the Cahn-Hilliard equation with advection i.e.,

Oc 1

— Ve==-V-(M(c)V 2

G U Ve= V- (M(E)Va). 2)
where p is the density, M(c) is the concentration dependent mobility, and u is
the chemical potential. We capture the interface by the half level set of a
continuous concentration function, i.e., I', is the half level set of c:

r= {Xc(x,t) = % }
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Surface tension force is calculated by c. Like the level set method, we want
¢(x,t) to be locally equilibrated. Right-hand side of (2) corresponds to a
reinitialization in level set methods. The advantages of this approach are:
(1) Topology changes without difficulties; interfaces can either merge or
breakup and no extra coding is required. (2) The concentration field ¢ has
physical meanings not only on the interface but also in the bulk phases.
Therefore, this method can be applied to many physical phase states such
as miscible, immiscible, partially miscible, lamellar phases, to name a few.
Fig. 1 shows evolution of the randomly oriented lamellar structure of block
copolymers under steady shear flow [1]. (3) It can be naturally extended to
multicomponent systems (more than two components, e.g., ternary system)
and three space dimensions with straightforward manner. Fig. 2 shows
time sequence of two droplets leaving interfaces under surface tension
forces. This system consists of three immiscible, density matched fluids,
ie., top and bottom fluid (I), middle fluid (II), and two droplets (III)
between interfaces. Surface tension between fluid 1 and III are greater than
others.

The paper is organized in the following manner. The governing equation
in cylindrical coordinates is introduced in Section 2. The proposed schemes
are numerically tested in Section 3. Finally, conclusions are derived in
Section 4.

Fig. 1. Evolution of the lamellar structure under shear flow.

Fig. 2. Evolution of two droplets leaving interfaces under surface tension forces.



592 J. Kim | Appl. Math. Comput. 160 (2005) 589-606

2. Numerical method
2.1. Governing equations

We consider a situation of a binary fluid consisting of two components, fluid
1 and fluid 2. We denote the composition of component 1, expressed as a mass
fraction, by c. In this setting the composition plays the role of an order
parameter that distinguishes the different phases of the fluid. In the present
study, we focus our attention on density matched and variable viscosity case
here. Therefore, gravity effects are neglected. Let p and u be the density and
velocity of the fluid. Then, in dimensional form, the NSCH system [12] is

V-u=0, (3)
pi=—Vp+ V- (n(c)(Vu+Vu')) + geaV - (|Ve|'I = Ve @ Ve),  (4)
pe =V - (M(c)Vp), (5)
1= f(c) = €A, (6)

where - = 0, + u - V is the total derivative, p is the density, u is the velocity, p is
the pressure, #(c) is the viscosity and given by 5(c) = ;¢ + n,(1 — ¢), where 1,
and 7, are viscosity coefficients of fluid 1 and fluid 2, respectively.
oeaV - (|Ve|’I — Ve @ Ve) is the interfacial tension body force concentrated on
the interface, where / is the identity matrix, ¢ is the interfacial tension, € is the
interface thickness parameter, o is constant, M(c) = ¢(1 — ¢) is the mobility, u
is the generalized chemical potential, f(c) = F'(c), and F(c) is the Helmholtz
free energy. Throughout this paper, F(c) = $c*(1 — ¢)’ is taken.

2.2. Nondimensional governing equations

The next step is to restate the dimensional NSCH system in dimensionless
form and for this purpose we define characteristic values such as length (Z,),
velocity (V.), viscosity (#,), density (p,), chemical potential (x,), and mobility
(M,). We then introduce the nondimensional variables for the space coordi-
nates, the velocity components, time, viscosity, the fluid pressure, interface
thickness, chemical potential, and mobility as follows:

_ X I N 4 _ p
= — = — = = — =
X L*’ u K? L*a n 7]*’ p p*V*Z’
_ M
E:i7 ﬁ:ﬁ,M: )
L* :u* M*

where the bars denote dimensionless variables. Substituting these variables into
the governing equations (3)—(6), dropping the bar notations, and using the
dimensionless numbers yields the following nondimensional system:
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V-u=0, (7)

€

1
m+me:4@+vammmwvfﬂ+%v4wﬁhﬂh®w%

(8)
c,—i—u-Vc:éV(M(c)V,u), 9)
p=f(c)—CAc (10)

and the dimensionless parameters are Reynolds number, Re = p,V.L./n,,
Weber number, We = p,L.V?/s, Cahn number, C = ¢*/u,, and diffusional
Peclet number, Pe = p L.V./(M.p,).

2.3. The axisymmetric NSCH system

In this paper we consider only axisymmetric flows, therefore there is no flow
in the 6 (azumusal) direction and all 0 derivatives are identically zero. So we
consider only two variables; r, the radial direction and z, the axial direction.
We define the fluid velocity by the vector u = (u,w), where u = u(r,z) is the
radial component of velocity and w = w(r,z) is the component in the axial
direction. The governing equations for axisymmetric flow are

%(ru)r+wz=0, (1)
o = =+ [ @), + 0+ ).~ 2] +

(12
ot = —po o [t +a), + Gre | 45 (03
6t wes = g [ L), + (o). (14)
K= 110~ €| o), + e, (15

where
o
F=(F,B) :%V-(|V0|21—V0®Vc),
and
1
Ve = (Cmcz)v V- (d)?lp) :;(V(]s)r—f—lpz,

where the indexes ¢, r, and z refer to differentiation with respect to the variable.
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2.4. Boundary conditions

We next specify the boundary conditions. Due to the symmetry of the flow,
at the column axis (» = 0), (0,z) = 0 and w,(0,z) = 0. At the rigid wall, » = R,
the no-slip conditions are applied, i.e., u(R,z) = w(R,z) = 0. For the radial axis
we assume periodic boundary conditions, i.e., ¢(r,0) = ¢(r, H), where ¢ is any
flow dependent variable and H is the height of the domain. We will denote the
domain containing the two fluids as Q and its boundary as 0Q.

2.5. Numerical procedure

Our strategy for solving the system (11)—(15) is a fractional step scheme
having two parts: first we solve the momentum and concentration equations
(12)—(15) without strictly enforcing the incompressibility constraint (11), then
we approximately project the resulting velocity field onto the space of discretely
divergence-free vector fields [11].

The computational grid consists of rectangular cells of size Ar and Az; these
cells Q; are centered at (r; = (i — 0.5) Ar, z; = (k — 0.5) Az), wherei=1,...,. M
and k=1,...,N. M and N are the number of cells in r-direction and z-direc-
tion, respectively. For simplicity, let # = Ar = Az. The discrete velocity field uj}

and concentration field ¢, are located at cell centers. The pressure p, 7, , is
PEAR)
located at cell corners. The notation u);, is used to represent an approximation

to u(r;, z, ¢"), where " = nAt and At is a time step. Likewise, p:;.wr% is an
approximation to p(r; + 4,z +4, /" — 4.

The time-stepping procedure is based on the Crank—Nicholson method. At
the beginning of each time step, given v, w", ¢"!, ¢”, and p" 2, we want to
find w!, ¢"*!, and p"+% which solve the following second-order temporal dis-
cretization of the equation of motion:

lln+1 —u" il 1 1 n+1 n+1\T
A = Ve g Ve (@ Va4 (V)]
1 ; il
370 Ve METau" 4+ (Tau) ]+ FH — (- V)
Cn+l _ C" 1 il
= Ve MV ) — (w- V) (16)
n+i 1 n n+1 C n n+-1
W= )+ (@] = S Aale 4 ), (17)

where the updated flow field satisfies the incompressibility condition

Vd . lln+1 =0.
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The outline of the main procedures in one time step is follows:

Step 1. Initialize ° to be the locally equilibrated concentration profile and u®
to be the divergencel -free velocity field.

Step 2. Compute (u- V,c)"*? by using a second order ENO scheme. In Section
2.5.3 we give a description of how (u- V,c)” *2 is formed.

Step 3. Update the concentration field ¢ to ¢"*!. Details of this step is pre-
sented in Section 2.5.1. Once c¢"*! is obtained, we compute
= _( + and n(eh).

Step 4. Compute (u-Vyu)" + by using a second order ENO scheme and F”*’
with ¢"*2. In Section 2.5.3 we give a description of how (u- Vdu)”+2
is formed. In Section 2.5.2 we give a description of F',

Step 5. We solve

u —u”

A7 Vi (@ )[Vau' + (Vau')'] +

= -V + 5

Re 2Re V!

() V' + (Vo) + F* = (u- V)" (18)
using a multigrid method for the intermediate velocity u* without
strictly enforcing the incompressibility constraint. In Section 2.5.2 we
give a description of V,p and V, - n(c)[Vu + Vu'].

Step 6. Project u* onto the space of discretely divergence-free vector fields and
get the velocity wtl, ie., w=u"t!+ ArV,p, where ¢ satisfies

Agp = V4 (5. 1
Step 7. Update pressure p”+z =p'2+ ¢.

These complete one time step.

2.5.1. Discretization and numerical solution of the axisymmetric Cahn—Hilliard
equation with degenerate mobility

In this section we present a numerical method for the concentration equa-
tions (16) and (17). We develop a nonlinear full approximation storage (FAS)
multigrid method to solve the nonlinear discrete system at the implicit time
level. The nonlinearity is treated using one step of Newton’s iteration and a
pointwise Gauss—Seidel relaxation scheme is used as the smoother in the
multigrid method. See the reference text [6] for additional details and back-
ground. Let us rewrite Egs. (16) and (17) as follows.

NSO(c"™, w3) = (¢", "),
where

n+1
NSO(e"!, ) = (CN V- (My(e) ),

1 C
'un+% _ 5j{(anrl) +§Ad6’n+]>
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and the source term is
c" 1 C
@) = (3@ -S4

where s”+%:—(u-Vdc)"+%. The mobility M(c) is regularized by
M;s(c) = 1/c*(1 —¢)* 40, where & is a small positive number (we take

5 = 10719 to avoid any numerical difficulties. In the following description of
one FAScycle, we assume a sequence of grids @, (€2,_, is coarser than Q, by
factor 2). Given the number v of pre- and post-smoothing relaxation sweeps, an
iteration step for the nonlinear multigrid method using the V-cycle is formally
written as follows:

FAS multigrid cycle

{etu ) = FASeycle(1¢f, e, 1 NSOy, 67, ), v).

m+h . .
That is, {c}', 1} 2} and {1 2} are the approximations of ¢;(r;,z) and
w;(r;,z¢) before and after an FAScycle Now, define the FAScycle.
(1) Presmoothmg Compute {c}' ,,a, 2}» by applying v smoothing steps to

{Cz a,“m :
{er it} = smootH (¢ i NS0 47,07

_1
which means performing v smoothing steps with initial approximation c7', ,u, 2
¢}, source terms ¢),y;, and SMOOTH relaxation operator to get the

approximation ¢/, ,a'lnf%. One SMOOTH relaxation operator step consists of
solving the system (21) and (22) given below by 2 x 2 matrix inversion for each
i and k.

Let us discretize Eq. (16) to get a smooth operator.

ntt ntt ntt
I M _lM M+ M
n+ H— 5 1 l 0., 1 0., 1 1
C 2 ik+s ik—% n+i
ik 4 + 2 2 s 2
At r,the h? Pe ik
n+%
Cig n+ Tit M 'ut+1k+r ‘Ma 1 ﬁ‘z Lk
=%+ 5
At rih?* Pe
n+2 n-%—7 n+2 n+%
M(s_, 1#1k+1 +M; Mk
ik+ ik—>
+ 2 , (19)

h? Pe
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il
where M = Mb(( e+ c},1,4)/4) and the other values, M5+12 ,

ffi.k
M; +2], and M 21 are calculated similarly.

Next, let us discretize Eq. (17). Since f(c%™') is nonlinear with respect to
e, we linearize f(ci™) at 2, ie.,

df (e
ptety m i) + L g ey

After substitution of this into (17) and rearranging the terms, we get

df(ct) 2C ntd C df(ct
(B35 )ttt =g - S i+ 51 - B e

2dc 2dc
m n+1 m n+1
C [ TipiCivin TTi16 1k n Ciir1 T Cikoy
2 }’ihZ h2 '

(20)

Next, we replace c”+1 and ,u][ % in Eqs (19) and (20) with ¢7 and ﬁzf% if j<iand
[ <k, otherwise w1th ¢y and ,u/, g , le.,

n+4 n+i n+t
—m z+;M5 ]2 —|—rl_;M 2 Mé‘ 2] +M5, 2] . "
ch n ikty ik—5 ﬁtnif o 7[,{ T S
At r,h2 Pe h? Pe ik At

n+2 m— 2 n+ m—y 1+2 ,mf—
‘M :“z+1k+” ‘M ﬂz Ik M :“zk+1+M'kl Mg
-3

1+2

* r:h? Pe + h? Pe ’

d C;n 2C —m _m—i n 1 m df c;n m
( /( k)Jrhz)Czk Ly zsz( ch) — ZAdCik+§f(cik)* 2(dck)cik

2dc
I -m
C <r1+2 Mk"””:—lc, 1k+ci,k+1 +Ci,k—1>

2 2 h?

(22)
(2) Compute the defect
(&'ﬁ,%’;) = (‘b?v l//7) — NSO, <C7’C’1nh“;nz>'

(3) Restrict the defect and {(‘:;”, /7',"_%}

m 7 I-1( 3m m —m 1 m —m— :
(dll—ﬂdz;n—l) =1 (duadzz)7 (‘71 1 My 1) —[l ( Cry by 2)~
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The restriction operator //~! maps /-level functions to (/ — 1)-level func-
tions.

- 1 Zk+1 Titl
croi(r,zi) = I~ ci(ri,zi) = 75— / / c(r,z)rdrdz
4n’r; Zk-1 rioy

1 (/Zk /Fi Zk i1 Zk+1 Ti
(L
4h2ri zp—1 Jriog Zk—1 i Zk i-1
Zk+1 Tiyl
+/ / c(r,z)rdrdz)
Zk ri

= |:ri—%(ci—%,k—l + Ci—%k-%—%) + ri+%(ci+%4k—% + Ci+%,k+%)i| /(4r,).

2
(4) Compute the right-hand side

_m—7

— _ 1
((rb;l—l? ‘M—l) = (dff,lvdZ;’ll) + NSO, (575717:“11 >

ﬂl*l .
(5) Compute an approximate solution {é?’[l,ﬂ,_f} of the coarse grid
equation on Q,_i, i.e.

NSO (e ) = (671 040)- (23)

If / = 1, we explicitly invert a 2 X 2 matrix to obtain the solution. If / > 1, we

solve (23) by performing a FAS [/-grid cycle using {E;”_l, p’,”j} as an initial
approximation:

m—1 n —m _m—% n n
{é?n—l»ﬂ;f} = FAScycle (l — l,c,_l,cl_l,u,IZ,NSOll,qSZ_],zp,_l,v).

(6) Compute the coarse grid correction (CGC):
1 1

~T—> N -1

~m __am —m 7 2 —m—3
Uy =€y — Cmps Uyt = My — My g
(7) Interpolate the correction
N I am am=y g am—b
Uy =Ly, Oy " =10y 5
The interpolation operator I/, maps (/ — 1)-level functions to /-level func-
tions. Then the prolongation operator ;| from ©;_; to @, is defined by

Ti

~ N
O R
l—

= ; 17171(1”1‘,21()-

~J

o
o

B

— ~— ~— ~—
|
l—

o=
=
+

ol—
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(8) Compute the corrected approximation on £,

1 1
m, after CGC __ —m ~m m—y, after CGC m—i 3
¢ =Cp Ty Wy =W "+ 1’21

m+d . .
©) Postsmoothf:ngc(}gompute { mtl 1+2} by applying v smoothing steps to
m, after CGC m—1, after
C s My

m—1i
{qﬁhu*ﬂ——SMOOTH(Q,Mdmwalulr”““”,Nsoh¢$w0.

This completes the description of a nonlinear FAScycle.

2.5.2. Discretization of pressure gradient, viscous, and surface tension terms
In this section we describe the axisymmetric finite difference approximation

to the pressure gradient Vp, viscous term V[n(Vu+ Vu')], and the surface
tension term, F.

Pil /¢+l+p,+— k3P L P L L

(Vap) ik — K
P, 1+%.k+%+p I T

2h

Let
2 2y
P2 9 In(Tu s )] — [0, = Hu ).+ ().
(#5279 =v-Inl =S, 4 w5 200w,
Then the first component of the viscous terms is discretized as follows:

2r,+1 M1 ,[(“,+l.k—uzk)—ZVF%ﬂif%'A(ltzk —Ui-1)

rih?

U 1(u,k+1 —uik)— W‘ki%(l‘[k*“i./:—ﬂ

Uiy + 2

7 =
ik
'1,v,c+% (Wit L1 =Wim Ll Wik Lk = Wiz 1 k)
py

1, 1 OV L= Wi kWi k1 = Wis 1 k1)
*
452

where ri1 = (riv1 +73)/2, n1 = [n(ci) + n(civ1x)]/2, and the other terms are
defined similarly.

The second component of the viscous terms, %5, is discretized in a similar
manner.

Let the surface tension term

€

P N N R 2
7o) = eV - (Ve T = Vew Ve)

€

1 1

2

= - —C + Cz:Cp — C:Copy —CrC; + CrrC; — GGz -
We \ r r
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To match the surface tension of the sharp interface model, o must satisfy

eoc/ () dz = 1,

o0

where ¢*9(r,z) = [I — tanh(z/(2v/2¢))]/2 is an equilibrium concentration profile
[4]. Then the surface tension term F is discretized as

1 1
f,;lc = (W(Cwuc —cimix) + BTA] (Cigs1 — 2cu + C;:,k—1)) (Cit1p — Cim1k)
1
- % (Ci,k+1 - Ci,k—l)(0i+1,k+1 + Cic1h-1 — Cit1h-1 — Ci—14k+1);
1 1
fj = <4rihz(ci+1‘k —Ci1k) + o8 (Civ1x — 2cu + Cil,k)) (Cikr1 — Cik—1)
1

- @ (Ci+lek - Cifl,k)(CiHAkH + Ci1h-1 — Civ1h-1 — Ci—17k+l)-

2.5.3. Approximation of the advection terms

A well-known projection method [11] is used for the flow solver, but we treat
the advection terms differently from theirs, where the advection terms are
computed using a Godunov procedure. In this section, we describe the dis-

cretization of the advection terms. The half time values u and c 2 are cal-

culated using an extrapolation from previous values, i.e., u, 4 _ (3um —uj ) /2
and c;, H_ = (3¢, — ¢") /2. From these cell centered values we obtain cell edged
values by u l%k = (r, i +r,+1ul+1k>/(2r L) and u’ /+1 = (ulf';z 7121)/2
In general, the normal velocities u 1 ' and w 1 at the edges are not divergence-

free. We apply the MAC projection [9] before constructing the convective
derivatives. The equation

Aap = Vvac S (24)
is solved for a cell centered ¢, where

((Ibl+l N d)ik) - rif%((f),‘k - 4’171,1{) 4 (/>,-,k+1 - 2¢ik + ¢i4k—1 ’
I",-hz h2

. u - u +% W’H% n+%
3%yl i~ Ticd Lk it} ik—1

r;h h

Ad¢zk -

n+l
Vac - u;, =
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601
The resulting linear system (24) is solved using a multigrid method, specif-

ically, V-cycles with a Gauss—Seidel relaxation. Then the divergence-free nor-
mal velocities # and w are defined by

it oad Quak— Pu it i Qi — Pa
e = Yk T v Wi T Wikt T '
7 7 h L

z.k+%

h
The convective terms are discretized as

V. iU 1 +V- 11U 1
v ﬂ+zl l+2 l+2,k L K
(ll’ a )ik

3 _
u. — u
zrih ( H»%,k 17%4k>

Wikl T Wiy

L/ _
o (“z:,k+% - ui,k—%) )

i V,~+111,-+l‘k + 11l _1y, -
( VdC) 2 — 2 2 2 2

— | C;1, — C;
2r,«h ( H—Tk l’k>

=3
Wil T Wigt /- _
"\ Cigrl — Cigd )
2h 1 5

where we suppress the n 4} temporal index. The edge values ¢,
l
and u kz

_n+2 n+2
j:lk’ L € ik
Ly are computed using a higher order ENO procedure derlved in Ref

[5]. The procedure for computing the quantity f; e is as follows:

j: i ﬁi+%,k > 07
i+ 1 otherwise,

a:f/’k_hf/'—l,k’ b= ﬁ+1kh S d:{a if |a| < |),

b otherwise,
h o
Sy = fi 5 d(1 =2 = ).

The quantities f;;,1 are computed in a similar manner

2.5.4. Semi-implicit viscous solve for the intermediate velocity u
Let us rewrite Eq. (18)

At n+l * s\ T
' —ﬁv (Vau' + (Vau') )}
=u" - 1= nty T o n n\T
W — AVp'E = Arfu - Vo) =0y [n (Vo' + (V') )}
+ AR (25)
Let the right-hand side of Eq. (25) be S". Then we have
u* ——V

are Ve |1 (o + (Van)") | = 8" = (s.9) (26)



602 J. Kim | Appl. Math. Comput. 160 (2005) 589-606

The first component of Eq. (26) is discretized as follow:

At (2r My + 2y 2kt
1+ Bl i R N o R B 7
5 > ik ik—L ik
2h? Re r; 7 2 2
* *
At | 2r Mgy g 2y,
="+ 7 ' 2 2 + *
=Sk T 50 Re . Mkt 18 1
1
* * * *
. ”i,k+%(wi+l,k+l =Wt T Wi — Wi—l,k)
Mgty T 4
(W =W wr — Wi )
Mkt Witk i—1k i+1k—1 i1 k-1 27
- ; . (27)

The second component of Eq. (26) is discretized in a similar manner. The
resulting discrete equations are solved using a multigrid method with Gauss—
Seidel relaxation.

2.5.5. Discretization of the projection

The result obtained in the last section is a nondivergence-free provisional
field u*. The approximate projection is obtained by solving a Poisson equation
for the pressure correction ¢

AP =Va (u*mu)

Then update new velocity

vt =u" - AtV

and pressure
pPr=pit g,
The introduction of this approach to the projection is described in detail in
[10] and an axisymmetric discretization is in [9].

3. Numerical result

In this section we apply this method to Rayleigh’s capillary instability
problems in which surface tension effects and topological changes are present.

3.1. Rayleigh instability

We will consider a long cylindrical thread of a viscous fluid 1, the viscosity
and density of which are denoted by #; and p; respectively, in an infinite mass of
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another viscous fluid 2 of viscosity 7, and p,. In the unperturbed state, the
interface has a perfectly cylindrical shape with a circular cross-section of radius
a. In the thread evolution, the deformation growth rates are consistent with the
predictions of the linear stability analysis (e.g. see [13]). In this analysis, the
growth of an initially cosinusoidal perturbation to the thread radius a, at
leading order, is seen to be given by

R(z,t) = a + a(t) cos(kz),

and o(t) = ape™, where in is the growth rate which is a solution of the deter-
minant equation (28) and o is the amplitude of the initial perturbation. In
Fig. 3 are shown schematically these parameters. The domain is axisymmetric
and the bottom boundary is the axis of symmetry.

Il(k(l) 11 (kia) K1 (ka) K1 (kla)
kaly(ka) kyaly(kia) —kaKy(ka) —kaKo(kia) |
2ﬂk2]1 (ka) B(kz + k12)]1 (kia) 2k2K1 (ka) (k2 + k%)K] (kla) -
F F F Fy
(28)
where
2.2

i -1
Fi = 2iBk>1] (ka) — ’:7—”‘10(1“1) G . Lo

o n o

a(k*a* — )k

Fy = 2ipkki 1 (kja) + Ii(kja),

a’nn
12 1! np

Fy = 2ik°K| (ka) + n—Ko(ka),
o

F;; = 21kk1Ki (kla),

o is the interfacial surface tension, f=u;/n, is the viscosity ratio,
k= k*+inp,/n,, kP = k> +inp;/n;, I,(x) and K,(x) are the modified Bessel
functions of nth order, while I/ (x) and K (x) denote their first derivatives in
respect to x.

151 ' 1

Fluid 2, Py Mg

Fluid 1, P M a

rT_)O L | | | | | N

|
z 0 1 2 3 4 5 6

Fig. 3. Schematic of a cylindrical thread of viscous fluid 1 embedded in another viscous fluid 2.
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10° . . . . . . . . .

Q = 64x256
QZ =128x256
93 = 256x256
04 =512x256
Linear theory

*
[}
+
9

o/a

—1

0 005 01 015 02 025 03 035 04 045 05
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Fig. 4. Evolution of the nondimensional value «(¢)/a. e = 0.02, Pe = 100/¢, Re = 0.16, We = 0.016.
’, ‘O’, ‘4, and ‘{>’ are the simulation results on the domains Q, ©,, Q;, and Q, respectively and
the solid line is the linear stability calculation.

Fig. 4 shows evolutions of the nondimensional value «(z)/a. The initial
concentration field and velocity fields are given by

t=0.1 t=3.1

X

t=1.5 t=3.8

1

t=2.1 t=4.3

1

t=2.9 t=5.0

Fig. 5. Time evolution leading to multiple pinch-offs. Viscosity ratio is 0.5, ¢ = 0.02, Pe = 100/,
Re =0.16, and We = 0.016. The dimensionless times are shown below each figures.
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r—0.5 ;\%(25 cos(z) )} |

A(r,z) = 0.5 [1 — tanh (

u’(r,z) =w'(r,2) =0

on a domain, Q, = {(r,2)|0 <r<2"?mand 0 <z < 2x}. In this computation we
use the parameters: «=0.5, «(0)=0.05, k=1, ¢=0.02, Re=0.16,
We = 0.016, Pe = 100/¢, and viscosity ratio f = 1. «’, ‘O’, ‘4, and ‘{>” are the
simulation results on the domains Q;, ©,, 25, and €4, respectively and the solid
line is the linear stability calculation. This figure shows that the wall plays no
role in the column instability when n > 3. This figure also suggests that the
evolution of the disturbances along the early times is well predicted by the
linear stability analysis.

An example of the long time evolution of the interface profile is shown in
Fig. 5. In the early states ( = 0.1, 1.5, and 2.1) the surface contour has only one
minimum at exactly z= 7. As the time increases, nonlinearities become
important and the initially cosinusoidal shape of the interface changes to a
more complex form. The zone of the minimum moves symmetrically off the
center (z =), giving rise to satellite drops. These satellite drop formations
could be attributed to the nonlinear terms in the equations of motion [2].

4. Conclusion

In this paper we have presented a diffuse-interface method for solving axi-
symmetric immiscible two-phase flow with surface tension. A second-order
projection method and a splitting scheme for the concentration field are used to
discretize the NSCH system. And resulting discrete equations are solved using
multigrid methods. There is no explicit tracking of the fluid interfaces. The
fluid interface is recovered at the end of calculation by locating the half level set
of a concentration function. We have shown good agreements with the linear
stability theory. We also have demonstrated the ability of the diffuse-interface
model to compute breakup and merging of the interfaces.

Acknowledgements

The author thanks his advisor, John Lowengrub, for intellectual and
financial support. This work was supported by the Department of Energy
(Office of Basic Sciences), The National Science Foundation and the Minne-
sota Supercomputer Institute.



606 J. Kim | Appl. Math. Comput. 160 (2005) 589-606

References

[1] H. Kodama, M. Doi, Shear-induced instability of the lamellar phase of a block copolymer,
Macromolecules 29 (1996) 2652-2658.

[2] M. Chacha, S. Radeev, L. Tadrist, R. Occelli, Numerical treatment of the instability and
breakup of a liquid capillary column in a bounded immiscible phase, Int. J. Multiphase Flow
23 (1997) 377-395.

[3] M. Sussman, E. Fatemi, An efficient, interface-preserving level set redistancing algorithm and
its application to interfacial incompressible fluid flow, SIAM J. Sci. Comput. 20 (1999) 1165-
1191.

[4] D. Jacqmin, Contact-line dynamics of a diffuse fluid interface, J. Fluid Mech. 402 (2000) 57-88.

[5] C.W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock capturing
schemes II, J. Comp. Phys. 83 (1989) 32-78.

[6] U. Trottenberg, C. Oosterlee, A. Schiiller, MULTIGRID, Academic Press, 2001.

[7] J.S. Lowengrub, L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological
transitions, Proc. Roy. Soc. Lond. A 454 (1998) 2617-2654.

[8] D.M. Anderson, G.B. McFadden, A.A. Wheeler, Diffuse-interface methods in fluid mechanics,
Ann. Rev. Fluid Mech. 30 (1998) 139-165.

[9] M. Sussman, Puckett, G. Elbridge, A coupled level set and volume-of-fluid method for,
J. Comput. Phys. 162 (2) (2000) 301-337.

[10] A.S. Almgren, J.B. Bell, W.G. Szymczak, A numerical method for the incompressible Navier—
Stokes equations based on an approximate projection, SIAM J. Sci. Comput. 17 (2) (1996)
358-369.

[11] J. Bell, P. Collela, H. Glaz, A second-order projection method for the incompressible Navier—
Stokes equations, J. Comp. Phys. 85 (2) (1989) 257-283.

[12] H.Y. Lee, J.S. Lowengrub, J. Goodman, Modeling pinchoff and reconnection in a Hele-Shaw
cell. I. The models and their calibration, Phys. Fluids 14 (2) (2002) 492-513.

[13] S. Tomotika, On the instability of a cylindrical thread of a viscous liquid surrounded by
another viscous fluid, Proc. Roy. Soc. A 150 (1935) 322-327.



	A diffuse-interface model for axisymmetric immiscible two-phase flow
	Introduction
	Numerical method
	Governing equations
	Nondimensional governing equations
	The axisymmetric NSCH system
	Boundary conditions
	Numerical procedure
	Discretization and numerical solution of the axisymmetric Cahn-Hilliard equation with degenerate mobility
	Discretization of pressure gradient, viscous, and surface tension terms
	Approximation of the advection terms
	Semi-implicit viscous solve for the intermediate velocity u&ast;
	Discretization of the projection


	Numerical result
	Rayleigh instability

	Conclusion
	Acknowledgements
	References


