
Mesh generation with a signed distance function

By

Jaemin Shin

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

Master of Science

in

Mathematics

in the

OFFICE OF GRADUATE STUDIES

of the

KOREA UNIVERSITY

Approved:

Committee Member 1

Committee Member 2

Committee Member 3

Committee in Charge

2011

-i-

Contents

Abstract iv

Acknowledgments v

Chapter 1. Introduction 1

Chapter 2. Implicit Function and Signed Distance Function 2
2.1. Implicit Function 2
2.2. Signed Distance Function 5
2.3. Discretization 9
2.4. Geometrical properties 11

Chapter 3. Motion in an Externally Generated Velocity Field 14
3.1. Level Set Method 14
3.2. Convection 14
3.3. Numerical discretization 15
3.4. Upwind Difference 15
3.5. Implementation of the upwind method 17
3.6. CFL condition 19
3.7. Hamilton-Jacobi ENO 20
3.8. Implementation 23

Chapter 4. Constructing Signed Distance Functions 27
4.1. Introduction 27
4.2. Motion in the Normal Direction 27
4.3. Godunov’s Scheme 28
4.4. Implement 29
4.5. Crossing Times 31
4.6. Reinitialization Equation 33
4.7. Numerical Discretization of Reinitialization Equation 35
4.8. Implement 36

Chapter 5. Mesh generator in MATLAB 40
5.1. Force Equilibrium 40
5.2. Delaunay Triangulation 42

-ii-

5.3. The Algorithm 43
5.4. Mesh Size Function 44
5.5. Mesh Generation in Two Dimension 46
5.6. Examples in two dimension 51
5.7. Mesh Generation in Three Dimension 54
5.8. Example in three dimension 58
5.9. Caution 59
5.10. Gradient Limiting 60
5.11. Examples for Gradient Limiting 61

Chapter 6. Results of Mesh Generation 67
6.1. Lake-Shaped Map 67
6.2. Red Blood Cell 68

Chapter 7. Conclusion 71

Appendix A. The used codes 72

Bibliography 74

-iii-

Abstract

The primary purpose of this thesis is to have the beginner encourage to un-
derstand for elementary step and easy access of the mesh generation, in particular,
”Distmesh” algorithm [26]. Forward the explanation of the algorithm, we should
construct the distance function, because the ”Distmesh” algorithm is based on us-
ing the distance from the interface. So we present the methods for making the
distance function.

The reinitialization equation make the some initial data for the signed distance
function. Note that the initial data and evolved data of reinitialization equation have
an identical interface. Although the ”Distmesh” algorithm need not the distance
function when the implicit interface is sufficiently smooth, we recommend that use
the signed distance function. We show a simplified version of the reinitialization
method in MATLAB code.

We present techniques for generation of unstructured meshes for geometries spec-
ified by a singed distance function. An initial mesh is iteratively improved by solving
for a force equilibrium in the element edges, and the boundary nodes are projected
to the given interface. The algorithm generalized to any dimension and it typically
produces meshes of very high quality. We show a simplified version of the method
in just one page of MATLAB code, and we describe how to improve and extend our
implementation.

Key work : Mesh generation, Distmesh algorithm, Reinitialization.

-iv-

Acknowledgments

I would like to begin by expressing my thanks to my advisor Junseok Kim. His
encouragement and unfailing support have been most valuable to me during these
years, and I feel deeply privileged for the opportunity to work in the research group.
I also gratefully acknowledge Prof. Woongae Hwang and Prof. Hongjoong Kim
of my thesis committee. And I also appreciate all the suggestions and comments
from colleagues and friends. Finally, my deepest gratitude goes to my family for
supporting and for encouraging and believing in me.

-v-

1

Chapter 1

Introduction

In the numerical simulation, in particular, finite element method (FEM) or finite

volume method (FVM), mesh generation is fundamental requirement. These meth-

ods have a merit that is natural on the curved shaped domain and on an arbitrary

domain. However, it take lots of time to study mesh generation. Mesh generator

tend to be complex codes that are nearly inaccessible. They are often just used as

“Black boxes”. Combining the meshing software and other codes is a tough work

for beginner in the mesh generation, so many people suffer hardship and some gives

up to progress. To many people, the mesh generation may not be the first priority.

We believe that the ability to understand and adapt a mesh generation code is too

valuable and potion to lose.

An essential decision is how to represent the geometry about the shape of the

region. A signed distance function d(x, y) used the basement of the algorithm for

generating the mesh. A signed distance function d is used to represent the shape of

the domain. In Chapter 4 we express the reinitialization equation for constructing

the signed distance function d. This equation originally developed by the motion

in the normal direction. So we first represent the evolution by the motion in an

externally generated velocity field in Chapter 3. And we present the implement for

constructing the signed distance function.

2

Chapter 2

Implicit Function and Signed Distance Function

In this chapter we introduce the notion of an implicit function and a signed

distance function with a Euclidean metric. Actually the signed distance function

is also a sort of the implicit function including the information about the interface

position. In these functions, “+” and “−” signs are used to indicate the outside

and inside of the surface, respectively. The most important advantage of the signed

distance function is that the values at any point mean the smallest distance to the

interface. So we explain the fundamental things of the implicit function, then study

the signed distance function. Finally we illustrate a number of useful properties,

focusing on those that will be of use to us later.

2.1. Implicit Function

First of all, we introduce the implicity surfaces. A good general review can be

found in [1]. To help clarify definitions, we discuss for each spatial dimensional. In

general, for ~x ∈ Rn, we define the interface as ∂Ω = {~x | φ(~x) = 0}. And we refer

to Ω− = {~x | φ(~x) < 0} as the inside region of the domain and Ω+ = {~x | φ(~x) > 0}
as the outside region of the domain.

In general, in Rn, sub-domains are n-dimensional, while the interface has di-

mension n − 1. We say that the interface has codimension one. And the implicit

function φ(~x) is defined on all ~x ∈ Rn, and its iso-contour has dimension n− 1.

For any function φ̂(~x) and an arbitrary iso-contour φ̂(~x) = a for some scalar

a ∈ R, we can define φ(~x) = φ̂(~x) − a, so that the φ(~x) = 0 iso-contour of φ is

identical to the φ̂(~x) = a iso-contour of φ̂. In addition, the functions φ and φ̂ have

2.1. IMPLICIT FUNCTION 3

identical properties up to a scalar translation a. Moveover, the partial derivatives

of φ are the same as the partial derivatives of φ̂, since the scalar vanishes upon

differentiation. Thus, throughout the text all of our implicit functions φ(~x) will be

defined so that the φ(~x) = 0 iso-contour represents the interface.

2.1.1. Points. In one spatial dimension, suppose we divide the real line into

three distinct pieces using the points x = −1 and x = 1. That is, we define (−∞,−1),

(−1, 1), and (1,∞) as three separate sub-domains of interest. We refer to Ω− =

(−1, 1) as the inside part of the domain and Ω+ = (−∞,−1)
⋃

(1,∞) as the outside

part of the domain. The border between the inside and the outside consists of the

two points ∂Ω = {−1, 1} and it is called the interface. In this case, the inside and

outside regions are one-dimensional space, while the interface is zero-dimensional.

x

∂Ω

φ = 0

interface

∂Ω

φ = 0

interface

Ω
+

φ > 0

outside

Ω
+

φ > 0

outside

Ω
−

φ < 0

inside
• •

1−1

Figure 2.1. Implicit representation of the points −1 and 1.

In an explicit interface representation, one explicitly writes down the points that

belong to the interface as we did above when defining ∂Ω = {−1, 1}. Alternatively,

an implicit interface representation defines the interface as the iso-contour of some

function. For example, the zero iso-contour of φ(x) = x2 − 1 is the set of all points

where φ(x) = 0; i.e., it is exactly ∂Ω = {−1, 1}. This is shown in Figure 2.2.

Consider the functions φ(x) = |x| − 1 and φ(x) = x4− 1. These are also implicit

functions which have the same interface ∂Ω = {−1, 1}, see Figure 2.3. So, there are

a lot of implicit function which has identical interface.

2.1. IMPLICIT FUNCTION 4

x

φ

φ(x) = x2
− 1

1−1

Figure 2.2. Implicit function φ(x) = x2 − 1.

x

φ
φ(x) = |x| − 1

1−1 x

φ
φ(x) = x4

− 1

1−1

Figure 2.3. Two different implicit function having the interface
∂Ω = {−1, 1}.

2.1.2. Curves. In two spatial dimensions, the lower dimensional interface is

a curve that separates R2 into sub-domains with nonzero areas. As an example,

consider the spacial curve x2 + y2 = 1 on plane R2. One explicitly write down the

points the interface as ∂Ω = {(x, y)| x2 + y2 = 1}. An implicit interface represen-

tation defines the interface as the iso-contour of some function. For example, the

zero iso-contour of a paraboloid φ(x, y) = x2 + y2 − 1 is the set of all points where

φ(x, y) = 0, which is exactly identical, i.e., ∂Ω = {(x, y)| φ(x, y) = 0}. In this case,

2.2. SIGNED DISTANCE FUNCTION 5

the interior region is the unit open disk Ω− = {(x, y)| x2 + y2 < 1}, and the exterior

region is Ω+ = {(x, y)| x2 + y2 > 1}. These regions are depicted in Figure 2.4.

x

y

1−1

1

−1

Ω
−

φ < 0

inside

Ω
+

φ > 0

outside

∂Ω

φ = 0

interface

Figure 2.4. Implicit representation of the curve x2 + y2 = 1.

2.1.3. Surfaces. In three spatial dimensions the lower-dimensional interface is

a surface that separates R3 into separate sub-domains with nonzero volumes. As

an example, consider φ(~x) = x2 + y2 + z2 − 1, where the interface is defined by

the φ(x, y, z) = 0 iso-contour, which is the boundary of the unit sphere defined as

∂Ω = {(x, y, z) | x2 +y2 +z2 = 1}. The interior region is the open unit sphere Ω− =

{(x, y, z) | x2+y2+z2 < 1}, and the exterior region is Ω+ = {(x, y, z) | x2+y2+z2 >

1}. The explicit representation of the interface is ∂Ω = {(x, y, z) | x2 +y2 + z2 = 1}.

2.2. Signed Distance Function

Until now, we defined implicit functions with φ(~x) < 0 in the interior region

Ω−, φ(~x) > 0 in the exterior region Ω+, and φ(~x) = 0 on the boundary ∂Ω. From

2.2. SIGNED DISTANCE FUNCTION 6

now on, we discuss signed distance functions. The signed distance functions are also

defined to be positive on the exterior region, negative on the interior region, and

zero on the boundary.

2.2.1. Distance Function. A distance function d(~x) is defined as

d(~x) = min
~xI∈∂Ω

(|~x− ~xI |).

Geometrically, d may be constructed as follows. If ~x ∈ ∂Ω, then d(~x) = 0.

Otherwise, for a given point ~x, find the point on the boundary set ∂Ω closest to ~x,

and label this point ~xC . Then d(~x) = |~x− ~xC |.

• • •~x
~y

~xc

Figure 2.5

For a given point ~x, supposed that ~xC is the point on the interface closest to ~x.

Then for every point ~y on the line segment from ~x to ~xC , d(~y) = |~y − ~xC |. To see

this, consider Figure 2.5, where ~x, ~xC , and an example of a ~y are shown. Since ~xC

is the closest interface point to ~x, no other interface points can be inside the large

circle drawn about ~x passing through ~xC . Points closer to ~y than ~xC must reside

inside the small circle drawn about ~y passing through ~xC . Since the small circle lies

inside the larger circle, no interface points can be inside the smaller circle, and thus

~xC is the interface point closest to ~y.

2.2. SIGNED DISTANCE FUNCTION 7

The line segment from ~x to ~xC is the shortest path from ~x to the interface. In

other words, the path from ~x to ~xC is the path of steepest descent for the function

d. Evaluating −∇d at any point on the line segment from ~x to ~xC gives a vector

that points from ~x to ~xC . Furthermore, since d is Euclidean distance,

|∇d| = 1 (2.1)

which is intuitive in the sense that moving twice as close to the interface gives a

value of d that is half as big. The above argument leading to equation 2.1 is true

for any ~x as long as there is a unique closest point ~xC .

2.2.2. Signed Distance Functions. A signed distance function is an implicit

function φ with |φ(~x)| = d(~x) for all ~x. Thus, φ(~x) = d(~x) = 0 for all ~x ∈ ∂Ω,

φ(~x) = −d(~x) for all ~x ∈ Ω− and φ(~x) = d(~x) for all ~x ∈ Ω+. Signed distance

functions share all the properties of implicit functions discussed in the last chapter.

In addition, there is new property

|∇φ| = 1 (2.2)

from equation 2.1. Once again, equation 2.2 is true only in a general sense. It is

not true for points that are equidistant from at least two points on the interface.

Distance functions have a kink at the interface where d = 0 is a local minimum,

causing problems in approximating derivatives are monotonic across the interface

and can be differentiated there with significantly higher confidence.

Given a point ~x, and using the fact that φ(~x) is the signed distance to the closest

point on the interface, we can write

~xC = ~x− φ(~x)
−→
N (2.3)

2.2. SIGNED DISTANCE FUNCTION 8

to calculate the closet point on the interface, where
−→
N is the local unit normal

at ~x. Again, this is true only in a general sense, since equidistant points ~x have more

than one closest point ~xC .

2.2.3. Examples. In the last chapter we used φ(x) = x2 − 1 as an implicit

representation of an explicit boundary ∂Ω = {−1, 1}. A signed distance function

representation of these same boundary points is φ(x) = |x| − 1, as shown in Figure

2.6. The signed distance function φ(x) = |x| − 1, gives the same boundary ∂Ω =

{−1, 1}, interior region Ω−, and exterior region Ω+, that the implicit function φ(x) =

x2 − 1 did. However, the signed distance function φ(x) = |x| − 1 has |∇φ| = 1 for

all x ∈ R without x = 0.

x

φ(x) = |x| − 1

1−1

Ω−

φ < 0
inside

Ω+

φ > 0
outside

Ω+

φ > 0
outside

∂Ω
φ = 0
interface

∂Ω
φ = 0
interface

Figure 2.6. Implicit representation of a signed distance function

In the spatial dimension we replace the implicit function φ(x, y) = x2 + y2 − 1

with the signed distance function φ(x, y) =
√

x2 + y2 − 1 in order to implicitly

represent the unit circle ∂Ω = {(x, y) | x2 + y2 = 1}. Here |∇φ(x, y)| = 1 for all

(x, y) ∈ R2, except (x, y) = 0.

In the same manner, we replace the implicit function φ(x, y, z) = x2 +y2 +z2−1

with the signed distance function φ(x, y, z) =
√

x2 + y2 + z2−1 in order to represent

the surface of the unit sphere ∂Ω = {(x, y, z) | x2 + y2 + z2 = 1} implicitly.

2.3. DISCRETIZATION 9

2.3. Discretization

The implicit representation can be stored with a discretization as well. We

discretize a bounded sub-domain D ⊂ R2 and ∂Ω ⊂ D. Within this domain, we

choose a finite set of points (xi, yj) for i = 1, · · · , N , j = 1, · · · ,M to discretely

represent the implicit function φ. This illustrates a drawback of the implicit surface

representation. Although the curve is a one dimension, we need to a two dimensional

region D to define the implicit function. Once we have chosen the set of points that

make up our discretization, we store the values of the implicity function φ(~x) at each

of these points.

But the implicit discretization does not tells us where the interface is located.

Instead, they both give information at sample locations. In the implicit representa-

tion we know the values of the implicity function φ at only a finite number of points

and need to use interpolation to find the values of φ else where.

We shall distretize in one dimensional space. Let M is a positive integer, ∆x =

(b − a)/(M − 1) be the uniform mesh size. And we define the Cartesian grids as

{xi | xi = a + (i− 1)∆x, 1 ≤ i ≤ M}, see Figure 2.7. The set of data points where

the implicit function φ is defined is called a mesh grid.

° ° ° ° ° °
x1 x2 x3 · · · · · · xMxM−1xM−2

Figure 2.7. One-dimensional cell corner mesh grid.

In two dimensional space, let N and M be positive integers, ∆x = (b−a)/(M−1)

and ∆y = (d−c)/(N−1) be mesh size for each direction. And we define the Cartesian

grids as {(xi, yj) | xi = a + (i− 1)∆x, yj = c + (j − 1)∆y, 1 ≤ i ≤ M, 1 ≤ j ≤ N}.
In a uniform Cartesian grid, all the subintervals [xi, xi+1] are equal in size, and we

set ∆x = xi+1 − xi. Likewise, all the subintervals [yj , yj+1] are equal in size, and

we set ∆y = yj+1 − yj . Furthermore, it is usually convenient to choose ∆x = ∆y

so that the approximation errors are the same in the x-direction as they are in the

2.3. DISCRETIZATION 10

y-direction. By definition, Cartesian grids imply the use of a rectangular domain

D = [a, b]× [c, d].

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

x1 x2 x3 · · · · · · · · · · · · xM

y1

y2

y3

...

...

yj

...

...

yN

xi

(xi, yj)

Figure 2.8. Two-dimensional cell corner mesh grid.

In three dimensional case, for the computational domain D = [a, b]×[c, d]×[e, f],

let M , N , and P be positive integers and define ∆x = (b − a)/(M − 1), ∆y =

(d− c)/(N − 1), and ∆z = (e− f)/(P − 1). And we can write a uniform Cartesian

grid with ∆x = ∆y = ∆z as following set: {(xi, yj , zk) | xi = a + (i − 1)∆x, yj =

c + (j − 1)∆y, zk = e + (k − 1)∆z, 1 ≤ i ≤ M, 1 ≤ j ≤ N, 1 ≤ k ≤ P}. This

extension is straightforward generalization from two spatial dimensions. It is the

powerful aspect of implicit surfaces that it is straightforward to go from two spatial

dimensions to three spatial dimensions.

2.4. GEOMETRICAL PROPERTIES 11

2.4. Geometrical properties

Initially, the implicit representation might seem wasteful, since the implicit func-

tion φ(~x) is defined on all of Rn, while the interface has only dimension n− 1. How-

ever, we will see that a number of very powerful tools are readily available when we

use this representation.

2.4.1. Normal Vector. The gradient of the implicit function is defined as

∇φ =
(

∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
. (2.4)

The gradient ∇φ is perpendicular to the iso-contours of φ and vector in the direction

of increasing φ. Therefore, if ~xC is a point on the zero iso-contour of φ, then ∇φ

evaluated at ~xC is a vector that points in the same direction as the local unit outward

normal vector
−→
N to the interface. Thus, the unit outward normal is

−→
N =

∇φ

|∇φ| (2.5)

for points on the interface. When the implicit function is a singed distance function,

above equation 2.5 can be simplified to

−→
N = ∇φ (2.6)

for the local unit normal, since |∇φ| = 1.

2.4.2. Curvature. The mean curvature of the interface is defined as the diver-

gence of the normal
−→
N = (n1, n2, n3),

κ = ∇ · −→N =
∂n1

∂x
+

∂n2

∂y
+

∂n3

∂z
, (2.7)

so that κ > 0 for convex regions, κ < 0 for concave regions, and κ = 0 for a plane.

Substituting equation 2.5 into equation 2.7 gives

κ = ∇ · −→N = ∇ ·
(∇φ

|∇φ|
)

, (2.8)

so that we can writhe the curvature as

2.4. GEOMETRICAL PROPERTIES 12

κ =
φxxφ2

y − 2φxφyφxy + φyyφ
2
x

(φ2
x + φ2

y)3/2
, (2.9)

in two dimension, and

κ =
φ2

xφyy − 2φxφyφxy + φ2
yφxx

(φ2
x + φ2

y)3/2

+
φ2

xφzz − 2φxφzφxz + φ2
zφxx

(φ2
x + φ2

y)3/2
+

φ2
yφzz − 2φyφzφyz + φ2

zφyy

(φ2
x + φ2

y)3/2
, (2.10)

in three dimension. The curvature equation is quite complicate. However, in the

signed distance case, it is more simple. If φ is signed distance function, the equation

2.8 simplifies to

κ = ∆φ (2.11)

for the curvature, where ∆φ is the Laplacian of φ defined as ∆φ = φxx +φyy, in two

spatial dimensional, and ∆φ = φxx + φyy + φzz, in three spatial dimensional.

2.4.3. Blending Surface. Boolean operations for signed distance functions

are similar to those for general implicit functions. If φA and φB are two differ-

ent signed distance functions, then φ(~x) = min(φA(~x), φB(~x)) is the signed dis-

tance function representing the union of the interior regions. The function φ(~x) =

max(φA(~x), φB(~x)) is the signed distance function, representing the intersection of

the interior regions. The complement of the set defined by φA(~x) has signed distance

function φ(~x) = −φA(~x). Also, φ(~x) = max(φA(~x),−φB(~x)) is the signed distance

function for the region defined by subtracting the interior of φB from the interior of

φA.

The functions union, difference, and intersection combine two geometries. They

use the simplification just mentioned for rectangles, a max or min that ignores

”closest corners”. We use separate projections to the regions A and B, at distances

φA(x, y) and φB(x, y):

2.4. GEOMETRICAL PROPERTIES 13

Union : φA∪B(x, y) = min(φA(x, y), φB(x, y)) (2.12)

Difference : φA\B(x, y) = max(φA(x, y),−φB(x, y)) (2.13)

Intersection : φA∩B(x, y) = max(φA(x, y), φB(x, y)) (2.14)

Variants of these can be used to generate blending surfaces for smooth inter-

sections between two surfaces [33]. For example, consider two implicit functions

f(x, y) = x2 + y2 − 0.25 and g(x, y) = (x− 0.5)2 + y2 − 0.25. Figure 2.9 shows the

properties which are union, intersection, and substraction.

Ω
−

A
Ω

−

B

Ω
−

A
∪ Ω

−

B

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

(a) Union

Ω
−

A
Ω

−

B

Ω
−

A
∩ Ω

−

B

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

(b) Intersection

Ω
−

A
Ω

−

B

Ω
−

A
− Ω

−

B

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

(c) Substraction

Figure 2.9. Blending surfaces of two circle.

14

Chapter 3

Motion in an Externally Generated Velocity Field

3.1. Level Set Method

Level set methods add dynamics to implicit surfaces. The key idea is the

Hamilton-Jacobi approach to numerical solutions of a time-dependent equation for

a moving implicit surface. This was first done in the seminal work of Osher and

Sethian [15]. We will discuss this work along the basic convection equation known

as the ”level set equation”. This moves an implicit surface in an externally generated

velocity field.

3.2. Convection

Suppose that the velocity of each point on the implicit surface is given as
−→
V (x, y, z); i.e., assume that

−→
V (x, y, z) is known for every point (x, y, z) ∈ D ⊂ R3.

Given this velocity field
−→
V = (u, v, w), we wish to move all the points on the surface

with this velocity.

We use an implicit function φ both to represent the interface and to evolve the

interface. In order to define the evolution of an implicit function φ we use the simple

convection or advection equation

∂φ

∂t
+
−→
V · ∇φ = 0, (3.1)

where t is the time variable and ∇ is the gradient operator defined as

∇ =
(

∂

∂x
,

∂

∂y
,

∂

∂z

)

in the three dimensional, so that

3.4. UPWIND DIFFERENCE 15

−→
V · ∇φ = u

∂φ

∂x
+ v

∂φ

∂y
+ w

∂φ

∂z
.

One and three-dimensional equation is analogously defined. This partial differential

equation (PDE) defines the motion of the interface where φ(x, y, z) = 0. It is an

Eulerian formulation of the interface evolution, since the interface is captured by the

implicit function φ. Equation 3.1 is sometimes referred to as the level set equation;

it was introduced for numerical interface evolution by Osher and Sethian [15].

3.3. Numerical discretization

Once φ and
−→
V are defined at every grid point on the Cartesian grid, we can

apply numerical methods to evolve φ forward in time moving the interface across

the grid. At some point in time, say time tn, let φn = φ(tn) represent the current

approximation values of φ. Updating φ in time consists of finding new approximation

values of φ at every grid point after some time increment ∆t. We denote these new

values of φ by φn+1 = φ(tn+1), where tn+1 = tn + ∆t.

A rather simple first-order accurate method for the time discretization of equa-

tion 3.1 is the forward Euler method given by

φn+1 − φn

∆t
+
−→
V n · ∇φn = 0, (3.2)

where
−→
V n is the given external velocity field at time tn, and ∇φn evaluates the

gradient operator using the values of φ at time tn. One generally needs to exercise

great care when numerically discretizing partial differential equations. We can write

the equation 3.2 in expanded form as

φn+1 − φn

∆t
+ unφn

x + vnφn
y + wnφn

z = 0 (3.3)

in three dimensional case.

3.4. Upwind Difference

For simplicity, consider the one-dimensional version of equation 3.3,

3.4. UPWIND DIFFERENCE 16

φn+1 − φn

∆t
+ unφn

x = 0, (3.4)

where (φx)i denotes the spatial derivative of φ at the point xi. If ui > 0, the values

of φ are moving from left to right, and the method of characteristics tells us to look

to the left of xi to determine what value of φ will land on the point xi at the end of

a time step. Similarly, if ui < 0, the values of φ are moving from right to left, and

the method of characteristics implies that we should look to the right to determine

an appropriate value of φi at time tn+1.

Here, we define the backward and forward difference as follows:

(
D−φ

)
i

=
φi − φi−1

∆x
, (3.5)

(
D+φ

)
i

=
φi+1 − φi

∆x
. (3.6)

And clearly D−φi should be used to approximate (φx)i when ui > 0. In con-

trast, D+φi cannot possibly give a good approximation, since it fails to contain the

information to the left of xi that dictates the new value of φi. Similar reasoning

indicates that D+φ should be used to approximate φx when ui < 0. This method of

choosing an approximation to the spatial derivatives based on the sign of u is known

as upwind difference or upwind method. When ui = 0, the ui(φx)i term vanishes,

and φx does not need to be approximated. This is a first-order accurate discretiza-

tion of the spatial, since D−φi and D+φi are first-order accurate approximations of

the derivative, it is called that the errors are O(∆x).

The combination of the forward Euler time discretization with the upwind differ-

ence scheme is a consistent finite difference approximation to the partial differential

equation 3.1, since the approximation error converges to zero as ∆t → 0 and ∆x → 0.

According to the Lax-Richtmyer equivalence theorem a finite difference approxima-

tion to a linear partial differential equation is convergent, i.e., the correct solution

is obtained as ∆t → 0 and ∆x → 0, if and only if it is both consistent and stable.

3.5. IMPLEMENTATION OF THE UPWIND METHOD 17

Stability guarantees that small errors in the approximation are not amplified as the

solution is marched forward in time.

3.5. Implementation of the upwind method

For fast understanding the upwind method, we present short MATLAB code in

below and the result of code is depicted in Figure 3.3 for each iteration. In this

example, the parameters is as follows: the initial data φ0 = e−10(x+1)2 , the spatial

size ∆x = 0.05, the temporal size ∆t = 0.05, and the domain D = [−2, 2].

% 1. Assignment

dx = 0.05; x = -2:dx:2; phi = exp(-10*(x+1).^2);

Vn = zeros(size(phi)+[0 2]);

data = zeros(size(phi)+[0,2]);

phi_x_minus = zeros(size(phi)+[0,2]);

phi_x_plus = zeros(size(phi)+[0,2]);

phi_x = zeros(size(phi)+[0,2]);

it=0; iterations = 10; t=0; dt = 0.05;

while it < iterations

% 2. External Velocity Field and Initial Setting for calculation

% The boundary condition - Neumann Condition

Vn(2:end-1) = 1.0;

data(2:end-1) = phi;

data(1) = data(2); data(end) = data(end-1);

% 3. Calculate the the gradient

phi_x_minus(2:end-1) = (data(2:end-1)-data(1:end-2))/dx;

phi_x_plus(2:end-1) = (data(3:end)-data(2:end-1))/dx;

phi_x = phi_x_minus.*(Vn > 0) + phi_x_minus.*(Vn < 0)+0*(Vn == 0);

% 4. New approximation

delta = Vn.*phi_x;

phi=phi-dt*delta(2:end-1);

it=it+1; t=t+dt;

end

Figure 3.1. MATLAB code for the upwind method

Now we describe steps 1 to 4 in the upwind algorithm code.

1. Initial setting the parameters and the assignment the using the vector. In

the assignment step, the vector is expended as 2 size because of the boundary

setting.

3.5. IMPLEMENTATION OF THE UPWIND METHOD 18

dx = 0.05; x = -2:dx:2; phi = exp(-10*(x+1).^2);

Vn = zeros(size(phi)+[0 2]);

data = zeros(size(phi)+[0,2]);

phi_x_minus = zeros(size(phi)+[0,2]);

phi_x_plus = zeros(size(phi)+[0,2]);

phi_x = zeros(size(phi)+[0,2]);

L. Now the code enters the main loop, where the φn is iteratively evolved. Ini-

tialize the variable it for the first iteration, and the termination criterion is

given by iteration. At the last of the loop, the variable it and t is updated.

it=0; iterations = 10; t=0; dt = 0.05;

while it < iterations

...

it=it+1; t=t+dt;

end

2. The externally generated velocity is setting in here,
−→
V = (u) = 1. And data

is store the current φn at 2 : end− 1, the 1 and end components are used the

boundary points. In this case, we present the Neumann boundary condition

for reasonable results.

Vn(2:end-1) = 1.0;

data(2:end-1) = phi;

data(1) = data(2); data(end) = data(end-1);

3. The variables phi x minus and phi x plus store the candidates D−φx and

D+φx. In this example, we use the backward and forward difference equation,

respectively. And we use the upwind scheme for choosing φx.

phi_x_minus(2:end-1) = (data(2:end-1)-data(1:end-2))/dx;

phi_x_plus(2:end-1) = (data(3:end)-data(2:end-1))/dx;

phi_x = phi_x_minus.*(Vn > 0) + phi_x_minus.*(Vn < 0)+0*(Vn == 0);

4. Finally, we calculate the new approximation φn+1.

delta = Vn.*phi_x;

phi=phi-dt*delta(2:end-1);

3.6. CFL CONDITION 19

−2 −1 0 1 2
0

0.5

1

5 iterations
−2 −1 0 1 2
0

0.5

1

20 iterations

−2 −1 0 1 2
0

0.5

1

10 iterations
−2 −1 0 1 2
0

0.5

1

25 iterations

−2 −1 0 1 2
0

0.5

1

15 iterations
−2 −1 0 1 2
0

0.5

1

30 iterations

Figure 3.2. Example of the upwind simulation u = 1.

3.6. CFL condition

Stability can be enforced using the Courant-Friedreichs-Lewy (CFL) condition.

This condition means that the numerical wave speed of ∆x/∆t must be at least as

fast as the physical wave speed |u|, i.e., ∆x/∆t > |u|. This leads us to the CFL

time step restriction of

∆t ≤ ∆x

max{|u|} , (3.7)

where max{|u|} is chosen to be the largest value of |u| over the entire Cartesian grid.

Equation 3.7 is usually enforced by choosing a CFL number α with

∆t

(
max{|u|}

∆x

)
= α (3.8)

and 0 < α ≤ 1. In the upwind example code, figure 3.1, the CFL condition number

α is 1. A common near-optimal choice is α = 0.9, and a common conservative choice

is α = 0.5. A multidimensional CFL condition can be written as

∆tmax
{ |u|

∆x
+
|v|
∆y

+
|w|
∆z

}
= α, (3.9)

3.7. HAMILTON-JACOBI ENO 20

and

∆t

(
max{|−→V |}

min{∆x,∆y, ∆z}

)
= α (3.10)

is also quite popular. More details on consistency, stability, and convergence can be

found in basic textbooks on the numerical solution of partial differential equations,

see ref. [16].

3.7. Hamilton-Jacobi ENO

The first-order accurate upwind scheme described in the last section can be

improved upon by using a more accurate approximation for φ−x and φ+
x . The velocity

u is sill used to decide whether φ−x or φ+
x is used, but the approximations for φ−x or

φ+
x can be improved significantly.

(ENO) polynomial interpolation of data for the numerical solution of conser-

vation laws. Their basic idea was to compute numerical flux functions using the

smoothest possible polynomial interpolants. The actual numerical implementation

of this idea was improved considerably by Shu and Osher in [17] and [18], where the

numerical flux functions were constructed directly from a divided difference table

of the pointwise data. In [15], Osher and Sethian realized that Hamilton-Jacobi

equations in one spatial dimension are integrals of conservation laws. They used

this fact to extend the ENO method for the numerical discretization of conservation

laws to Hamilton-Jacobi equations such as equation 3.1. This Hamilton-Jacobi ENO

(HJ ENO) method allows one to extend first-order accurate upwind differencing to

higher-order spatial accuracy by providing better numerical approximations to φ−x
or φ+

x

Proceeding along the lines of [17] and [18], we use the smoothest possible poly-

nomial interpolation to find φ and then differentiate to get φx. As is standard with

Newton polynomial interpolation (see any undergraduate numerical analysis text,

3.7. HAMILTON-JACOBI ENO 21

e.g., [19]). The first divided differences of φ are defined midway between grid nodes

as

D1
i+ 1

2
φ =

φi+1 − φi

∆x
, (3.11)

where we are assuming that the mesh spacing is uniformly ∆x. Note that

D1
i− 1

2

φ = (D−φ)i and D1
i+ 1

2

φ = (D+φ)i, i.e., the first divided differences, are the

backward and forward difference approximations to the derivatives. The second

divided differences are defined at the grid nodes as

D2
i φ =

D1
i+ 1

2

φ−D1
i− 1

2

φ

∆x
, (3.12)

while the third divided differences

D3
i+ 1

2
φ =

D2
i+1φ−D2

i φ

∆x
(3.13)

are defined midway between the grid nodes.

The divided differences are used to reconstruct a polynomial of the form

φ(x) = Q0(x) + Q1(x) + Q2(x) + Q3(x) (3.14)

that can be differentiated and evaluated at xi to find (φ−x)i and (φ+
x)i. That is,

we use

φx(xi) = Q′
1(xi) + Q′

2(xi) + Q′
3(xi) (3.15)

to define (φ−x)i and (φ+
x)i. Note that the constant Q0(x) term vanishes upon

differentiation.

To find φ−x we start with k = i − 1, and to find φ+
x we start with k = i. Then

we define

3.7. HAMILTON-JACOBI ENO 22

Q1(x) = (D1
k+ 1

2
)(x− xi), (3.16)

so that

Q′
1(xi) = D1

k+ 1
2

φ, (3.17)

implying that the contribution from Q′
1(xi) in equation 3.15 is the backward

difference in the case of φ−x in equation 3.15 is the backward difference in the case

of φ+
x . In other words, first-order accurate polynomial interpolation is exactly first-

order upwinding. Improvements are obtained by including the Q′
2(xi) and Q′

3(xi)

terms in equation 3.15, leading to second- and third-order accuracy, respectively.

Looking at the divided difference table and noting that D1
k+ 1

2

φ was chosen for

first-order accuracy, we have two choices for the second-order accurate correction.

We could include the next point to the left and use D2
kφ, or we could include the next

point to the right and use D2
k+1φ. The key observation is that smooth slowly varying

data tend to produce small numbers in divided difference tables, while discontinuous

or quickly varying data tend to produce large numbers in divided difference tables.

This is obvious in the sense that the differences measure variation in the data.

Comparing |D2
kφ| to |D2

k+1φ| indicates which of the polynomial interpolants has

more variation. We would like to avoid interpolating near large variations such as

discontinuities or steep gradients, since they cause overshoots in the interpolating

function, leading to numerical errors in the approximation of the derivative. Thus, if

|D2
kφ| ≤ |D2

k+1φ|, we set c = D2
kφ/2 and k? = k − 1; otherwise, we set c = D2

k+1φ/2

and k? = k. Then we define

Q2(x) = c(x− xk)(x− xk+1), (3.18)

so that

3.8. IMPLEMENTATION 23

Q′
2(xi) = c(2(i− k)− 1)∆x (3.19)

is the second-order accurate correction to the approximation of φx in equation

(3.18). If we stop here, i.e., omitting the Q3 term, we have a second-order accurate

method for approximating φ−x and φ+
x . Note that k? has not yet been used. It is

defined below for use in calculating the third-order accurate correction.

Similar to the second-order accurate correction, the third-order accurate correc-

tion is obtained by comparing |D3
k?+ 1

2

φ| and |D3
k?+ 3

2

φ|. If |D3
k?+ 1

2

φ| ≤ |D3
k?+ 3

2

φ|, we

set c? = D3
k?+ 1

2

φ/3; otherwise, we set c? = D3
k?+ 3

2

φ/3. Then we define

Q3(x) = c?(x− xk?)(x− xk?+1)(x− xk?+2), (3.20)

so that

Q′
3(xi) = c?(3(i− k?)2 − 6(i− k?) + 2)(∆x)2 (3.21)

is the third-order accurate correction to the approximation of φx in equation

(3.18).

3.8. Implementation

In this section, we present the detail explanation for the second order ENO

scheme. The third order ENO scheme is in the next Chapter with the reinitialization.

% 1. Assignment

dx = 0.05; x = -2:dx:2; phi(size(x))=0;

Vn = zeros(size(phi)+[0 4]);

delta = zeros(size(phi)+[0 4]);

data = zeros(size(phi)+[0 4]);

phi_x_minus = zeros(size(phi)+[0 4]);

phi_x_plus = zeros(size(phi)+[0 4]);

phi_x = zeros(size(phi)+[0 4]);

% 2. Initialization

ix=x>-1.5 & x<-0.5; phi(ix)=0.5-abs(x(ix)+1);

3.8. IMPLEMENTATION 24

phi0 = phi;

it=0; iterations = 100; t=0; dt = 0.025;

while it < iterations

% 3. External Velocity Field and Initial Setting for iteration

% The boundary condition - Periodic condition

Vn(3:end-2) = 1; data(3:end-2) = phi;

data(2) = data(end-2); data(1) = data(end-3);

data(end-1) = data(1); data(end) = data(2);

% 4. Calculate the gradient

phi_x_minus= der_ENO2_minus(data, dx);

phi_x_plus = der_ENO2_plus(data, dx);

phi_x = phi_x_minus.*(Vn > 0) + phi_x_minus.*(Vn < 0)+0*(Vn == 0);

% 5. New approximation

delta = Vn.*phi_x;

phi = phi - dt * delta(3:end-2);

it = it+1; t = t+dt;

end

Now we describe steps 1 to 5 in the upwind algorithm code.

1. Initial setting the parameters and the assignment the using the vector. In

the assignment step, the vector is expended as 4 size because of the boundary

setting.

dx = 0.05; x = -2:dx:2; phi(size(x))=0;

Vn = zeros(size(phi)+[0 4]);

delta = zeros(size(phi)+[0 4]);

data = zeros(size(phi)+[0 4]);

phi_x_minus = zeros(size(phi)+[0 4]);

phi_x_plus = zeros(size(phi)+[0 4]);

phi_x = zeros(size(phi)+[0 4]);

2. Initialization for φ0 which is triangle shape.

ix=x>-1.5 & x<-0.5;

phi(ix)=0.5-abs(x(ix)+1);

L. Now the code enters the main loop, where the φn is iteratively evolved. Ini-

tialize the variable it for the first iteration, and the termination criterion is

given by iteration. At the last of the loop, the variable it and t is updated.

it=0; iterations = 100; t=0; dt = 0.025;

while it < iterations

3.8. IMPLEMENTATION 25

...

it = it+1; t = t+dt;

end

3. The externally generated velocity is setting in here,
−→
V = (u) = 1. And data

is store the current φn at 3 : end− 1, the 1, 2 and end−1, end components

are used the boundary points. In this case, we present the Periodic boundary

condition for reasonable results.

Vn(3:end-2) = 1; data(3:end-2) = phi;

data(2) = data(end-2); data(1) = data(end-3);

data(end-1) = data(1); data(end) = data(2);

4. The variables phi x minus and phi x plus store the candidates D−φx and

D+φx. In this example, we use the ENO difference scheme. And we use the

upwind scheme for choosing φx.

phi_x_minus= der_ENO2_minus(data, dx);

phi_x_plus = der_ENO2_plus(data, dx);

phi_x = phi_x_minus.*(Vn > 0) + phi_x_minus.*(Vn < 0)+0*(Vn == 0);

5. Finally, we calculate the new approximation φn+1.

delta = Vn.*phi_x;

phi = phi - dt * delta(3:end-2);

The function codes der ENO2 minus and der ENO2 plus are accompanying.

function data_x = der_ENO2_minus(data, dx)

data_x = zeros(size(data));

D1 = (data(2:end)-data(1:end-1))/dx;

D2 = (D1(2:end)-D1(1:end-1))/dx;

absD2 = abs(D2);

for i=1:(length(data)-4)

k = i-1;

Q1p = D1(k+2);

if absD2(k+1) <= absD2(k+2)

c = D2(k+1)/2;

else

c = D2(k+2)/2;

end

Q2p = c*(2*(i-k)-1)*dx;

data_x(i+2) = Q1p+Q2p;

3.8. IMPLEMENTATION 26

end

function [data_x] = der_ENO2_plus(data, dx)

data_x = zeros(size(data));

D1 = (data(2:end)-data(1:end-1))/dx;

D2 = (D1(2:end)-D1(1:end-1))/dx;

absD2 = abs(D2);

for i=1:(length(data)-4)

k = i;

Q1p = D1(k+2);

if absD2(k+1) <= absD2(k+2)

c = D2(k+1)/2;

else

c = D2(k+2)/2;

end

Q2p = c*(2*(i-k)-1)*dx;

data_x(i+2) = Q1p+Q2p;

end

Figure 3.3 is the results when we carry out the code in the MATLAB.

−2 −1 0 1 2
0

0.5

10 iterations
−2 −1 0 1 2
0

0.5

90 iterations

−2 −1 0 1 2
0

0.5

30 iterations
−2 −1 0 1 2
0

0.5

110 iterations

−2 −1 0 1 2
0

0.5

50 iterations
−2 −1 0 1 2
0

0.5

130 iterations

−2 −1 0 1 2
0

0.5

70 iterations
−2 −1 0 1 2
0

0.5

150 iterations

Figure 3.3. Example of the upwind simulation u = 1.

27

Chapter 4

Constructing Signed Distance Functions

4.1. Introduction

In the mesh generation in Chapter 5, we need an implicit surface function φ,

and it can be made simple when φ is a signed distance function. for this reason, we

dedicate this chapter to numerical techniques for constructing approximate signed

distance functions. These techniques can be applied to the initial data in order to

initialize φ to a signed distance function.

Even if a particular numerical approach doesn’t seem to depend on how accu-

rately φ approximates a signed distance function, one needs to remember that φ can

develop noisy features and steep gradients that are not amenable to finite difference

approximations. For this reason, it is always advisable to reinitialize occasionally so

that φ stays smooth enough to approximate its spatial derivatives with some degree

of accuracy.

4.2. Motion in the Normal Direction

We discuss the motion of an interface under an internally generated velocity

field for constant motion in the normal direction. This velocity field is defined by
−→
V = a

−→
N or Vn = a, where a is a constant. The corresponding level set equation

(i.e., equation (4.4)) is

φt + a|∇φ| = 0, (4.1)

4.3. GODUNOV’S SCHEME 28

where a can be of either sign. When a > 0 the interface moves in the normal

direction, and when a < 0 the interface moves opposite the normal direction. When

a = 0 this equation reduces to the trivial φt = 0, where φ is constant for all time.

4.2.1. Numerical Discretization. First of all, we consider

|∇φ| = |∇φ|2
|∇φ| =

∇φ

|∇φ| · ∇φ =
−→
N · ∇φ. (4.2)

For instructive purposes, suppose we plug
−→
V = a

−→
N into equation 3.1 and try a

simple upwind differencing approach. That is, we can write the equation 4.1 as
∂φ

∂t
+

(
aφx

|∇φ| ,
aφy

|∇φ| ,
aφz

|∇φ|
)
· ∇φ = 0, (4.3)

and we will discretize as follows:
φn+1 − φn

∂t
+

(
aφn

x

|∇φn| ,
aφn

y

|∇φn| ,
aφn

z

|∇φn|
)
· ∇φn = 0 (4.4)

with forward difference. The CFL condition for equation 4.4 is

∆t

|∇φn|
(|aφn

x|
∆x

+
|aφn

y |
∆y

+
|aφn

z |
∆z

)
= α (4.5)

with 0 < α ≤ 1 corresponding to equation 3.9.

4.3. Godunov’s Scheme

In [25], Godunov proposed a numerical method that gives the exact solution to

the Riemann problem for one-dimensional conservation laws with piecewise con-

stant initial data. Let us examine the Godunov method in detail. First, as-

sume a > 0. If φ−x and φ+
x are both positive, then use φx = φ−x . If φ−x and

φ+
x are both negative, use φx = φ+

x . If aφ+
x ≤ 0 and aφ−x ≥ 0, treat the ex-

pansion by setting φx = 0. If aφ+
x ≥ 0 and aφ−x ≤ 0, treat the shock by set-

ting φx to either φ−x or φ+
x ,, depending on which gives the largest magnitude for

aφx. Note that when φ−x = φ+
x = 0 both of the last two cases are activated, and

both consistently give φx = 0. We also have the following elegant formula due

to Rouy and Tourin [11]: φ2
x ≈ max

(
max(φ−x , 0)2, min(φ+

x , 0)2
)

when a > 0, and

φ2
x ≈ max

(
min(φ−x , 0)2,max(φ+

x , 0)2
)

when a < 0.

4.4. IMPLEMENT 29

4.4. Implement

Next, we describe the MATLAB code for motion in normal direction with the

Hamilton-Jacobi ENO scheme in two spacial dimension. The code exactly generate

result, figure 4.2. The extension to the three dimension remain for readers.

dx = 0.05; dy = 0.05; alpha = 0.5;

[xx,yy]=meshgrid(-2:dx:2,-2:dy:2);

phi = (xx.^2).^(1/3) + (yy.^2).^(1/3) -1;

delta = zeros(size(phi)+4);

Vn = zeros(size(S_phi)+4);

S_phi = phi./sqrt(phi.^2 + dx.^2);

Vn(3:end-2,3:end-2) = -1;

it=0; t=0; iterations = 10;

while (it < iterations)

[delta, Vx, Vy] = evolve_normal_ENO2(phi, dx, dy, Vn);

maxs = max(max(Vx/dx+Vy/dy));

dt = alpha/(maxs+(maxs==0));

phi = phi - dt*delta;

it = it+1; t = t+dt;

end

function [delta, Vx, Vy] = evolve_normal_ENO2(phi, dx, dy, Vn)

data = zeros(size(phi)+4);

phi_x_minus = zeros(size(phi)+4);

phi_x_plus = zeros(size(phi)+4);

phi_y_minus = zeros(size(phi)+4);

phi_y_plus = zeros(size(phi)+4);

phi_x = zeros(size(phi)+4);

phi_y = zeros(size(phi)+4);

data(3:end-2,3:end-2) = phi;

for i=1:size(phi,1)

phi_x_minus(i+2,:) = der_ENO2_minus(data(i+2,:), dx);

phi_x_plus(i+2,:) = der_ENO2_plus(data(i+2,:), dx);

phi_x(i+2,:) = select_der_normal(Vn(i+2,:), phi_x_minus(i+2,:), phi_x_plus(i+2,:));

end

for j=1:size(phi,2)

phi_y_minus(:,j+2) = der_ENO2_minus(data(:,j+2), dy);

phi_y_plus(:,j+2) = der_ENO2_plus(data(:,j+2), dy);

phi_y(:,j+2) = select_der_normal(Vn(:,j+2), phi_y_minus(:,j+2), phi_y_plus(:,j+2));

end

abs_grad_phi = sqrt(phi_x.^2 + phi_y.^2);

4.4. IMPLEMENT 30

Vx = abs(Vn.*phi_x ./ (abs_grad_phi+dx*dx*(abs_grad_phi == 0)));

Vy = abs(Vn.*phi_y ./ (abs_grad_phi+dx*dx*(abs_grad_phi == 0)));

Vx = Vx(3:end-2,3:end-2);

Vy = Vy(3:end-2,3:end-2);

delta = Vn.*abs_grad_phi;

delta = delta(3:end-2,3:end-2);

function [data_x] = der_ENO2_minus(data, dx)

data_x = zeros(size(data));

data(2) = 2*data(3)-data(4);

data(1) = 2*data(2)-data(3);

data(end-1) = 2*data(end-2)-data(end-3);

data(end) = 2*data(end-1)-data(end-2);

D1 = (data(2:end)-data(1:end-1))/dx;

D2 = (D1(2:end)-D1(1:end-1))/dx;

absD2 = abs(D2);

for i=1:(length(data)-4)

k = i-1;

Q1p = D1(k+2);

if absD2(k+1) <= absD2(k+2)

c = D2(k+1)/2;

else

c = D2(k+2)/2;

end

Q2p = c*(2*(i-k)-1)*dx;

data_x(i+2) = Q1p+Q2p;

end

function [data_x] = der_ENO2_plus(data, dx)

data_x = zeros(size(data));

data(2) = 2*data(3)-data(4);

data(1) = 2*data(2)-data(3);

data(end-1) = 2*data(end-2)-data(end-3);

data(end) = 2*data(end-1)-data(end-2);

D1 = (data(2:end)-data(1:end-1))/dx;

D2 = (D1(2:end)-D1(1:end-1))/dx;

absD2 = abs(D2);

for i=1:(length(data)-4)

k = i;

Q1p = D1(k+2);

if absD2(k+1) <= absD2(k+2)

c = D2(k+1)/2;

4.5. CROSSING TIMES 31

else

c = D2(k+2)/2;

end

Q2p = c*(2*(i-k)-1)*dx;

data_x(i+2) = Q1p+Q2p;

end

function [der] = select_der_normal(Vn, der_minus, der_plus)

der = zeros(size(der_plus));

for i=1:numel(Vn)

Vn_der_m = Vn(i)*der_minus(i);

Vn_der_p = Vn(i)*der_plus(i);

if Vn_der_m <= 0 & Vn_der_p <= 0

der(i) = der_plus(i);

elseif Vn_der_m >= 0 & Vn_der_p >= 0

der(i) = der_minus(i);

elseif Vn_der_m <= 0 & Vn_der_p >= 0

der(i) = 0;

elseif Vn_der_m >= 0 & Vn_der_p <= 0

if abs(Vn_der_p) >= abs(Vn_der_m)

der(i) = der_plus(i);

else

der(i) = der_minus(i);

end

end

end

Figure 4.1 shows the evolution of a rose-shaped interface r = sin 9θ as it moves

normal to itself in the outward direction.

Figure 4.2 shows the evolution of a star-shaped interface φ(x, y) = |x|1/3+|y|1/3−
1 as it moves normal to itself in the inward direction.

4.5. Crossing Times

One of the difficulties associated with the direct computation of signed distance

functions is locating and discretizing the interface. This can be avoided in the

following fashion. Consider a point ~x ∈ Ω+. If ~x does not lie on the interface, we

wish to know how far from the interface it is so that we can set φ(~x) = +d. If

we move the interface in the normal direction using equation (4.1) with a = 1, the

4.5. CROSSING TIMES 32

−2 −1 0 1 2
−2

−1

0

1

2

−2 −1 0 1 2
−2

−1

0

1

2

−2 −1 0 1 2
−2

−1

0

1

2

−2 −1 0 1 2
−2

−1

0

1

2

−2 −1 0 1 2
−2

−1

0

1

2

−2 −1 0 1 2
−2

−1

0

1

2

−2 −1 0 1 2
−2

−1

0

1

2

−2 −1 0 1 2
−2

−1

0

1

2

Figure 4.1. Evolution of a nine leaved rose-shaped interface as it
moves normal to itself in the outward direction. The iteration number
is written at each figures.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 4.2. Evolution of a star-shaped interface as it moves normal
to itself in the inward direction. The iteration number is written at
each figures.

interface eventually crosses over ~x, changing the local value of φ from positive to

negative. If we keep a time history of the local values of φ at ~x, we can find the

exact time when φ was equal to zero using interpolation in time. This is the time

4.6. REINITIALIZATION EQUATION 33

it takes the zero level set to reach the point ~x, and we call that time t0 the crossing

time. Since equation (4.1) moves the level set normal to itself with speed a = 1,

the time it takes for the zero level set to reach a point ~x is equal to the distance

the interface is from ~x. That is, the crossing time t0 is equal to the distance d. For

points ~x ∈ Ω−, the crossing time is similarly determined using a = −1 in equation

(4.1).

In a series of papers, [8] and [9], Kimmel and Bruckstein introduced the notion of

using crossing times in image-processing applications. For example, [9] used equation

(4.1) with a = 1 to create shape offsets, which are distance functions with distance

measured from the boundary of an image. The idea of using crossing times to solve

some general Hamilton- Jacobi equations with Dirichlet boundary conditions was

later generalized and rigorized by Osher [10].

4.6. Reinitialization Equation

In [11], Rouy and Tourin proposed a numerical method for solving |∇φ| = f(~x)

for a spatially varying function f derived from the intensity of an image. In the

trivial case of f(~x) = 1, the solution φ is a signed distance function. They added

f(~x) to the right-hand side of equation (4.1) as a source term to obtain

φt + |∇φ| = f(~x) (4.6)

which is evolved in time until a steady state is reached. At steady state, the values of

φ cease to change, implying that φt = 0. Then equation (4.6) reduces to |∇φ| = f(~x),

as desired. Since only the steady-state solution is desired, [11] used an accelerated

iteration method instead of directly evolving equation (4.6) forward in time.

Equation (4.6) propagates information in the normal direction, so information

flows from smaller values of φ to larger values of φ. This equation is of little use in

reinitializing the level set function, since the interface location will be influenced by

the negative values of φ. That is, the φ = 0 isocontour is not guaranteed to stay

4.6. REINITIALIZATION EQUATION 34

fixed, but will instead move around as it is influenced by the information flowing

in from the negative values of φ. One way to avoid this is to compute the signed

distance function for all the grid points adjacent to the interface. Then

φt + |∇φ| = 1 (4.7)

can be solved in Ω+ to update φ based on those grid points adjacent to the interface.

And we can update the values of φ in Ω− by solving

φt − |∇φ| = −1 (4.8)

to steady state. Equations (4.7) and (4.8) reach steady state rather quickly, since

they propagate information at speed 1 in the direction normal to the interface. For

example, if ∆t = 0.5∆x, it takes only about 10 time steps to move information from

the interface to 5 grid cells away from the interface.

In [12], Sussman, Smereka, and Osher put all this together into a reinitialization

equation

φt + S(φ0)(|∇φ| − 1) = 0, (4.9)

where S(φ0) is a sign function defined as follows:

S(φ0) =





1, if ~x ∈ Ω+,
0, if ~x ∈ ∂Ω,

−1, if ~x ∈ Ω−.
(4.10)

We want φ to stay identically equal to zero. Using this equation, there is no

need to initialize any points near the interface for use as boundary conditions. The

points near the interface in Ω+ use the points in Ω− as boundary conditions, while

the points in Ω− conversely look at those in Ω+. This circular loop of dependencies

eventually balances out, and a steady-state signed distance function is obtained. As

long as φ is relatively smooth and the initial data are somewhat balanced across the

interface, this method works rather well.

4.7. NUMERICAL DISCRETIZATION OF REINITIALIZATION EQUATION35

4.7. Numerical Discretization of Reinitialization Equation

A nice feature of using this procedure to reinitialize is that the level set function

is reinitialized near the front first. To see this we rewrite equation 4.9 as

∂φ

∂t
+
−→
V · ∇φ = S(φ), (4.11)

where

−→
V = S(φ)

∇φ

|∇φ| .

It is evident that equation 4.11 is a nonlinear hyperbolic equation with the

characteristic velocities pointing outwards from the interface in the direction of the

normal. This means that φ will be reinitialized to |∇φ| = 1 near the interface first.

In discretizing equation 4.9, the S(φ0)|∇φ| term is treated as motion in the

normal direction as described in the first part of this Chapter as below.

S(φ0)|∇φ| = S(φ0)
∇φ

|∇φ| · ∇φ, (4.12)

so that equation 4.11 is corresponding to

∂φ

∂t
+ S(φ0)

∇φ

|∇φ| · ∇φ = S(φ0). (4.13)

Here S(φ0) is constant for all time and can be thought of as a spatially varying

“a” term. Numerical tests indicate that better results are obtained when S(φ0) is

numerically smeared out, so [12] used

S(φ0) =
φ0√

φ2
0 + (∆x)2

(4.14)

as a numerical approximation. Numerical smearing of the sign function decreases its

magnitude, slowing the propagation speed of information near the interface. This

probably aids the balancing out of the circular dependence on the initial data as

well, since it produces characteristics that do not look as far across the interface

for their information. We recommend using Godunov’s method for discretizing the

4.8. IMPLEMENT 36

hyperbolic S(φ0)|∇φ| term. After finding a numerical approximation to S(φ0)|∇φ|,
we combine it with the remaining S(φ0) source term at each grid point.

4.8. Implement

dx = 0.01; dy = 0.01; iterations = 10; alpha = 0.5;

[xx,yy]=meshgrid(-2:dx:2,-2:dy:2);

phi = xx.^2 + yy.^2 - 1;

S_phi = phi./sqrt(phi.^2 + dx.^2);

Vn_ext = zeros(size(S_phi)+6);

Vn_ext(4:end-3,4:end-3) = S_phi;

it=0; t=0;

while (it < iterations)

[delta, H1_abs, H2_abs] = evolve_normal_ENO3(phi, dx, dy, Vn_ext);

maxs = max(max(H1_abs/dx + H2_abs/dy));

dt = alpha/(maxs+(maxs==0));

phi = phi + dt*(S_phi - delta);

it = it+1; t = t+dt;

end

function [delta, H1_abs, H2_abs] = evolve_normal_ENO3(phi, dx, dy, Vn)

delta = zeros(size(phi)+6);

data_ext = zeros(size(phi)+6);

data_ext(4:end-3,4:end-3) = phi;

phi_x_minus = zeros(size(phi)+6);

phi_x_plus = zeros(size(phi)+6);

phi_y_minus = zeros(size(phi)+6);

phi_y_plus = zeros(size(phi)+6);

phi_x = zeros(size(phi)+6);

phi_y = zeros(size(phi)+6);

for i=1:size(phi,1)

phi_x_minus(i+3,:) = der_ENO3_minus(data_ext(i+3,:), dx);

phi_x_plus(i+3,:) = der_ENO3_plus(data_ext(i+3,:), dx);

phi_x(i+3,:) = select_der_normal(Vn(i+3,:), phi_x_minus(i+3,:), phi_x_plus(i+3,:));

end

% then scan the columns

for j=1:size(phi,2)

phi_y_minus(:,j+3) = der_ENO3_minus(data_ext(:,j+3), dy);

phi_y_plus(:,j+3) = der_ENO3_plus(data_ext(:,j+3), dy);

phi_y(:,j+3) = select_der_normal(Vn(:,j+3), phi_y_minus(:,j+3), phi_y_plus(:,j+3));

end

abs_grad_phi = sqrt(phi_x.^2 + phi_y.^2);

4.8. IMPLEMENT 37

H1_abs = abs(Vn.*phi_x ./ (abs_grad_phi+dx*dx*(abs_grad_phi == 0)));

H2_abs = abs(Vn.*phi_y ./ (abs_grad_phi+dx*dx*(abs_grad_phi == 0)));

H1_abs = H1_abs(4:end-3,4:end-3);

H2_abs = H2_abs(4:end-3,4:end-3);

delta = Vn.*abs_grad_phi;

delta = delta(4:end-3,4:end-3);

function [data_x] = der_ENO3_minus(data, dx)

data_x = zeros(size(data));

data(3) = 2*data(4)-data(5);

data(2) = 2*data(3)-data(4);

data(1) = 2*data(2)-data(3);

data(end-2) = 2*data(end-3)-data(end-4);

data(end-1) = 2*data(end-2)-data(end-3);

data(end) = 2*data(end-1)-data(end-2);

D1 = (data(2:end)-data(1:end-1))/dx;

D2 = (D1(2:end)-D1(1:end-1))/dx;

absD2 = abs(D2);

D3 = (D2(2:end)-D2(1:end-1))/dx;

absD3 = abs(D3);

for i=1:(length(data)-6)

k = i-1;

Q1p = D1(k+3);

if absD2(k+2) <= absD2(k+3)

kstar = k-1;

c = D2(k+2)/2;

else

kstar = k;

c = D2(k+3)/2;

end

Q2p = c*(2*(i-k)-1)*dx;

if absD3(kstar+2) <= absD3(kstar+3)

cstar = D3(kstar+2)/3;

else

cstar = D3(kstar+3)/3;

end

Q3p = cstar*(3*(i-kstar)*(i-kstar) - 6*(i-kstar) + 2)*dx*dx;

data_x(i+3) = Q1p+Q2p+Q3p;

end

function [data_x] = der_ENO3_plus(data, dx)

data_x = zeros(size(data));

data(3) = 2*data(4)-data(5);

data(2) = 2*data(3)-data(4);

4.8. IMPLEMENT 38

data(1) = 2*data(2)-data(3);

data(end-2) = 2*data(end-3)-data(end-4);

data(end-1) = 2*data(end-2)-data(end-3);

data(end) = 2*data(end-1)-data(end-2);

D1 = (data(2:end)-data(1:end-1))/dx;

D2 = (D1(2:end)-D1(1:end-1))/dx;

absD2 = abs(D2);

D3 = (D2(2:end)-D2(1:end-1))/dx;

absD3 = abs(D3);

for i=1:(length(data)-6)

k = i;

Q1p = D1(k+3);

if absD2(k+2) <= absD2(k+3)

kstar = k-1;

c = D2(k+2)/2;

else

kstar = k;

c = D2(k+3)/2;

end

Q2p = c*(2*(i-k)-1)*dx;

if absD3(kstar+2) <= absD3(kstar+3)

cstar = D3(kstar+2)/3;

else

cstar = D3(kstar+3)/3;

end

Q3p = cstar*(3*(i-kstar)*(i-kstar) - 6*(i-kstar) + 2)*dx*dx;

data_x(i+3) = Q1p+Q2p+Q3p;

end

function [der] = select_der_normal(Vn, der_minus, der_plus)

der = zeros(size(der_plus));

for i=1:numel(Vn)

Vn_der_m = Vn(i)*der_minus(i);

Vn_der_p = Vn(i)*der_plus(i);

if Vn_der_m <= 0 & Vn_der_p <= 0

der(i) = der_plus(i);

elseif Vn_der_m >= 0 & Vn_der_p >= 0

der(i) = der_minus(i);

elseif Vn_der_m <= 0 & Vn_der_p >= 0

der(i) = 0;

elseif Vn_der_m >= 0 & Vn_der_p <= 0

if abs(Vn_der_p) >= abs(Vn_der_m)

der(i) = der_plus(i);

else

der(i) = der_minus(i);

end

4.8. IMPLEMENT 39

end

end

40

Chapter 5

Mesh generator in MATLAB

In this Chapter, we present the a simple mesh generator which is described

in a few dozen lines of MATLAB [26]. We could offer detail explanation for each

implementations, but our chief hope is that users will take this code as a starting

point for their own work. So when you sufficiently understand the below contents,

you should study more advanced method.

The combination of distance function representation and node movements for

forces turns out to be good. The distance function quickly determines if a node is

inside or outside the region. Thus d(x, y) is used extensively in the implementation,

to find the distance to that closest point.

5.1. Force Equilibrium

For the actual mesh generation, our iterative technique is based on the physical

analogy between a mesh and a truss structure. Mesh points are nodes of the truss.

Assuming an appropriate force-displacement function for the bars in the truss at

each iteration, we solve for equilibrium.

For example, the below truss structure in figure 5.2 consider the 6 mesh points

which are setting by 5 point fixed in equidistance and 1 point is laid. Let’s thick a

kind of spring force fk for each bar. We wish to change the only 1 point to be the

below summation is zero.

f =
5∑

k=1

fk (5.1)

5.1. FORCE EQUILIBRIUM 41

Figure 5.2 shows the process to find the position of one point to be the force equi-

librium state.

f

f1

f2

f3

f4

f5

f

f1

f2 f3

f4

f5

f
f1

f2
f3

f4

f5

Figure 5.1. Example of the process to the force equilibrium.

In the plane, our mesh generation algorithm is based on a simple mechanical

analogy between a triangular mesh and a 2-D truss structure, or equivalently a

structure of springs. In the physical model, the edges of the triangles correspond

to bars, and the points correspond to joints of the truss. Each bar has a force-

displacement relationship f(l, l0) depending on its current length l and its expected

length l0.

The external forces on the structure come at the boundaries. At every boundary

node, there is a reaction force acting normal to the boundary. The magnitude of

this force is just large enough to keep the node from moving outside. The positions

of the joints are found by solving for a static force equilibrium in the structure. To

solve for the force equilibrium, collect the x- and y-coordinates of all N mesh points

into an N × 2 array p:

p =
[

x, y
]
. (5.2)

And we can write the force vector F(p):

F(p) =
[
Fint,x(p),Fint,y(p)

]
+

[
Fext,x(p),Fext,y(p)

]
(5.3)

where Fint contains the internal forces from the bars, and Fext are the external

forces generated by reactions from the boundaries. The first column of F contains

the x-components of the forces, and the second column contains the y-components.

5.2. DELAUNAY TRIANGULATION 42

5.2. Delaunay Triangulation

Any set of points in the xy-plane can be triangulated by the Delaunay algorithm

[32]. The Delaunay algorithm determines non-overlapping triangles that fill the

convex hull of the input points, such that every edge is shared by at most two

triangles, and the circumcircle of every triangle contains no other input points. In

the plane, this triangulation is known to maximize the minimum angle of all the

triangles.

(a) (b)

Figure 5.2. Delaunay Triangulation: (a) Correct and (b) Wrong

Note that F(p) depends on the topology of the bars connecting the joints. In the

algorithm, this structure is given by the Delaunay triangulation of the meshpoints.

The force vector F(p) is not a continuous function of p, since the topology (the

presence or absence of connecting bars) is changed by Delaunay as the points move.

The forces move the nodes, and (iteratively) the Delaunay triangulation algo-

rithm adjusts the topology (it decides the edges). Those are the two essential steps.

Other codes use Laplacian smoothing [28] for mesh enhancements, usually without

retriangulations. This could be regarded as a force-based method, and related mesh

5.3. THE ALGORITHM 43

generators were investigated by Bossen and Heckbert [29]. We mention Triangle [30]

as a robust and freely available Delaunay refinement code.

5.3. The Algorithm

The system F(p) = 0 has to be solved for a set of equilibrium positions p. A

simple approach to solve F(p) = 0 is to introduce an artificial time-dependence. For

some p(0) = p0, we consider the system of ODEs

dp

dt
= F(p(t)), t ≥ 0. (5.4)

If a steady stable solution is found, it satisfies our system F(p) = 0. The system

equation 5.4 is approximated using the forward Euler method. At the discretized

(artificial) time tn = n∆t, the approximate solution pn ≈ p(tn) is updated by

pn+1 = pn + ∆tF(pn). (5.5)

When evaluating the force function, the positions pn are known and therefore

also the truss topology (triangulation of the current point-set). The external reaction

forces enter in the following way: All points that go outside the region during the

update from pn to pn+1 are moved back to the closest boundary point. This conforms

to the requirement that forces act normal to the boundary. The points can move

along the boundary, but not go outside.

The implementation uses this linear response for the repulsive forces but it allows

no attractive forces:

f(l, l0) =
{

k(l0 − l) if l ≤ l0,
0 if l > l0.

(5.6)

The function k(l0 − l) models ordinary linear springs. There are many alter-

natives for the force function f(l, l0) in each bar, and several choices have been

investigated [29], [31]. It is reasonable to require f = 0 for l = l0. The proposed

5.4. MESH SIZE FUNCTION 44

treatment of the boundaries means that no points are forced to stay at the bound-

ary, they are just prevented from crossing it. It is therefore important that most

of the bars give repulsive forces f > 0, to help the points spread out across the

whole geometry. This means that f(l, l0) should be positive when l is near the de-

sired length, which can be achieved by choosing l0 slightly larger than the length we

actually desire

5.4. Mesh Size Function

The hope is that (when h(x, y) = 1) the lengths of all the bars at equilibrium

will be nearly equal, giving a well-shaped triangular mesh. The edge lengths should

be close to the relative size h(x) specified by the user (the lengths are nearly equal

when the user chooses h(x) = 1). For uniform meshes l0 is constant. But there

are many cases when it is advantageous to have different sizes in different regions.

Where the geometry is more complex, it needs to be resolved by small elements.

The solution method may require small elements close to a singularity to give good

global accuracy. A uniform mesh with these small elements would require too many

nodes.

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

h(x) = max(|x|, 1)

Figure 5.3. The relation between the mesh size function h(x) and
generating mesh point length

5.4. MESH SIZE FUNCTION 45

In the implementation, the desired edge length distribution is provided by the

user as an element size function h(x, y). Note that h(x, y) does not have to equal

the actual size; it gives the relative distribution over the domain. This avoids an

implicit connection with the number of nodes, which the user is not asked to specify.

For example, if h(x, y) = 1 + x in the unit square, the edge lengths close to the left

boundary (x = 0) will be about half the edge lengths close to the right boundary

(x = 1). Figure 5.3 shows the relationship the mesh size function h and the actual

mesh size. This is true regardless of the number of points and the actual element

sizes. To find the scaling, we compute the ratio between the mesh area from the

actual edge lengths li and the desired size (from h(x, y) at the midpoints (xi, yi) of

the bars):

Scaling factor =
(∑

l2i∑
h(xi, yi)2

)1/2

. (5.7)

We assume here that h(x, y) is specified by the user. It could also be created

using adaptive logic to implement the local feature size, which is roughly the distance

between the boundaries of the region (see example 5 below). For highly curved

boundaries, h(x, y) could be expressed in terms of the curvature computed from

d(x, y). An adaptive solver that estimates the error in each triangle can choose

h(x, y) to refine the mesh for good solutions.

The initial node positions p0 can be chosen in many ways. A random distribu-

tion of the points usually works well. For meshes intended to have uniform element

sizes (and for simple geometries), good results are achieved by starting from equally

spaced points. When a non-uniform size distribution h(x, y) is desired, the conver-

gence is faster if the initial distribution is weighted by probabilities proportional to

1/h(x, y)2 (which is the density). Our rejection method starts with a uniform initial

mesh inside the domain, and discards points using this probability.

5.5. MESH GENERATION IN TWO DIMENSION 46

5.5. Mesh Generation in Two Dimension

The complete source code for the two-dimensional mesh generator is in below.

Each line is explained in detail below.

The first line specifies the calling syntax for the function distmesh2d:

function [p,t]=distmesh2d(fd,fh,h0,bbox,pfix,varargin)

This meshing function produces the following outputs:

• The node positions p.

• The triangle indices t. The row associated with each triangle has 3 integer

entries to specify node numbers in that triangle.

function [p,t]=distmesh2d(fd,fh,h0,bbox,pfix,varargin)

dptol=.001; ttol=.1; Fscale=1.2; deltat=.2; geps=.001*h0; deps=sqrt(eps)*h0;

% 1. Create initial distribution in bounding box (equilateral triangles)

[x,y]=meshgrid(bbox(1,1):h0:bbox(2,1),bbox(1,2):h0*sqrt(3)/2:bbox(2,2));

x(2:2:end,:)=x(2:2:end,:)+h0/2; % Shift even rows

p=[x(:),y(:)]; % List of node coordinates

% 2. Remove points outside the region, apply the rejection method

p=p(feval(fd,p,varargin{:})<geps,:); % Keep only d<0 points

r0=1./feval(fh,p,varargin{:}).^2; % Probability to keep point

p=[pfix; p(rand(size(p,1),1)<r0./max(r0),:)]; % Rejection method

N=size(p,1); % Number of points N

pold=inf; % For first iteration

while 1

% 3. Retriangulation by the Delaunay algorithm

if max(sqrt(sum((p-pold).^2,2))/h0)>ttol % Any large movement?

pold=p; % Save current positions

t=delaunayn(p); % List of triangles

pmid=(p(t(:,1),:)+p(t(:,2),:)+p(t(:,3),:))/3; % Compute centroids

t=t(feval(fd,pmid,varargin{:})<-geps,:); % Keep interior triangles

% 4. Describe each bar by a unique pair of nodes

bars=[t(:,[1,2]);t(:,[1,3]);t(:,[2,3])]; % Interior bars duplicated

bars=unique(sort(bars,2),’rows’); % Bars as node pairs

% 5. Graphical output of the current mesh

trimesh(t,p(:,1),p(:,2),zeros(N,1))

view(2),axis equal,axis off,drawnow

end

% 6. Move mesh points based on bar lengths L and forces F

barvec=p(bars(:,1),:)-p(bars(:,2),:); % List of bar vectors

5.5. MESH GENERATION IN TWO DIMENSION 47

L=sqrt(sum(barvec.^2,2)); % L = Bar lengths

hbars=feval(fh,(p(bars(:,1),:)+p(bars(:,2),:))/2,varargin{:});

L0=hbars*Fscale*sqrt(sum(L.^2)/sum(hbars.^2)); % L0 = Desired lengths

F=max(L0-L,0); % Bar forces (scalars)

Fvec=F./L*[1,1].*barvec; % Bar forces (x,y components)

Ftot=full(sparse(bars(:,[1,1,2,2]),ones(size(F))*[1,2,1,2],[Fvec,-Fvec],N,2));

Ftot(1:size(pfix,1),:)=0; % Force = 0 at fixed points

p=p+deltat*Ftot; % Update node positions

% 7. Bring outside points back to the boundary

d=feval(fd,p,varargin{:}); ix=d>0; % Find points outside (d>0)

dgradx=(feval(fd,[p(ix,1)+deps,p(ix,2)],varargin{:})-d(ix))/deps; % Numerical

dgrady=(feval(fd,[p(ix,1),p(ix,2)+deps],varargin{:})-d(ix))/deps; % gradient

p(ix,:)=p(ix,:)-[d(ix).*dgradx,d(ix).*dgrady]; % Project back to boundary

% 8. Termination criterion: All interior nodes move less than dptol (scaled)

if max(sqrt(sum(deltat*Ftot(d<-geps,:).^2,2))/h0)<dptol, break; end

end

The input arguments are as follows:

• The geometry is given as a signed distance function fd.

• The mesh size function h(x, y) is given as a function fh.

• The parameter h0 is the distance between points in the initial distribution

p0.

• The bounding box for the region is an array bbox = [xmin,ymin;xmax,ymax].

• The fixed node positions are given as an array pfix

• Additional parameters to the functions fd and fh can be given in the last

arguments varargin.

In the beginning of the code, six parameters are set. The default values seem

to work very generally, and they can for most purposes be left unmodified. The

algorithm will stop when all movements in an iteration (relative to the average bar

length) are smaller than dptol. Similarly, ttol controls how far the points can move

relatively before a retriangulation by Delaunay.

The internal pressure is controlled by Fscale which is k value in equation 5.6.

The time step in Eulers method 5.5 is deltat, and geps is the tolerance in the

geometry evaluations. The square root deps of the machine tolerance is the ∆x in

5.5. MESH GENERATION IN TWO DIMENSION 48

the numerical differentiation of the distance function. This is optimal for one-sided

first-differences. These numbers geps and deps are scaled with the element size.

Now we describe steps 1 to 8 in the distmesh2d algorithm.

1. The first step creates a uniform distribution of nodes within the bounding

box of the geometry, corresponding to equilateral triangles:

[x,y]=meshgrid(bbox(1,1):h0:bbox(2,1),bbox(1,2):h0*sqrt(3)/2:bbox(2,2));

x(2:2:end,:)=x(2:2:end,:)+h0/2; % Shift even rows

p=[x(:),y(:)]; % List of node coordinates

The meshgrid function generates a rectangular grid, given as two vectors x and

y of node coordinates. Initially the distances are
√

3h0/2 in the y-direction.

By shifting every second row h0/2 to the right, all points will be a distance h0

from their closest neighbors. The coordinates are stored in the N × 2 array

p.

2. The next step removes all nodes outside the desired geometry:

p=p(feval(fd,p,varargin{:})<geps,:); % Keep only d<0 points

feval calls the distance function fd, with the node positions p and the ad-

ditional arguments varargin as inputs. The result is a column vector of

distances from the nodes to the geometry boundary. Only the interior points

with negative distances (allowing a tolerance geps) are kept. Then we evalu-

ate h(x, y) at each node and reject points with a probability proportional to

1/h(x, y)2:

r0=1./feval(fh,p,varargin{:}).^2; % Probability to keep point

p=[pfix; p(rand(size(p,1),1)<r0./max(r0),:)]; % Rejection method

N=size(p,1); % Number of points N

The users array of fixed nodes is placed in the first rows of p.

3. Now the code enters the main loop, where the location of the N points is

iteratively improved. Initialize the variable pold for the first iteration, and

start the loop (the termination criterion comes later):

pold=inf; % For first iteration

5.5. MESH GENERATION IN TWO DIMENSION 49

while 1

...

end

Before evaluating the force function, a Delaunay triangulation determines

the topology of the truss. Normally this is done for p0, and also every time

the points move, in order to maintain a correct topology. To save computing

time, an approximate heuristic calls for a retriangulation when the maximum

displacement since the last triangulation is larger than ttol (relative to the

approximate element size l0):

if max(sqrt(sum((p-pold).^2,2))/h0)>ttol % Any large movement?

pold=p; % Save current positions

t=delaunayn(p); % List of triangles

pmid=(p(t(:,1),:)+p(t(:,2),:)+p(t(:,3),:))/3; % Compute centroids

t=t(feval(fd,pmid,varargin{:})<-geps,:); % Keep interior triangles

...

end

The node locations after retriangulation are stored in pold, and every

iteration compares the current locations p with pold. The MATLAB de-

launayn function generates a triangulation t of the convex hull of the point

set, and triangles outside the geometry have to be removed. We use a simple

solution here . if the centroid of a triangle has d < 0, that triangle is removed.

This technique is not entirely robust, but it works fine in many cases, and it

is very simple to implement.

4. The list of triangles t is an array with 3 columns. Each row represents a

triangle by three integer indices (in no particular order). In creating a list

of edges, each triangle contributes three node pairs. Since most pairs will

appear twice (the edges are in two triangles), duplicates have to be removed:

bars=[t(:,[1,2]);t(:,[1,3]);t(:,[2,3])]; % Interior bars duplicated

bars=unique(sort(bars,2),’rows’); % Bars as node pairs

5. The next two lines give graphical output after each retriangulation. See the

MATLAB help texts for details about these functions:

5.5. MESH GENERATION IN TWO DIMENSION 50

trimesh(t,p(:,1),p(:,2),zeros(N,1))

view(2),axis equal,axis off,drawnow

6. Each bar is a two-component vector in barvec; its length is in L.

barvec=p(bars(:,1),:)-p(bars(:,2),:); % List of bar vectors

L=sqrt(sum(barvec.^2,2)); % L = Bar lengths

The desired lengths L0 come from evaluating h(x, y) at the midpoint of

each bar. We multiply by the scaling factor in equation 5.7 and the fixed

factor Fscale, to ensure that most bars give repulsive forces f > 0 in F.

hbars=feval(fh,(p(bars(:,1),:)+p(bars(:,2),:))/2,varargin{:});

L0=hbars*Fscale*sqrt(sum(L.^2)/sum(hbars.^2)); % L0 = Desired lengths

F=max(L0-L,0); % Bar forces (scalars)

The actual update of the node positions p is in the next block of code.

The force resultant Ftot is the sum of force vectors in Fvec, from all bars

meeting at a node. A stretching force has positive sign, and its direction is

given by the two-component vector in bars. The sparse command is used

(even though Ftot is immediately converted to a dense array!), because of

the nice summation property for duplicated indices.

Fvec=F./L*[1,1].*barvec; % Bar forces (x,y components)

Ftot=full(sparse(bars(:,[1,1,2,2]),ones(size(F))*[1,2,1,2],[Fvec,-Fvec],N,2));

Ftot(1:size(pfix,1),:)=0; % Force = 0 at fixed points

p=p+deltat*Ftot; % Update node positions

Note that Ftot for the fixed nodes is set to zero. Their coordinates are

unchanged in p.

7. If a point ends up outside the geometry after the update of p, it is moved

back to the closest point on the boundary (using the distance function). This

corresponds to a reaction force normal to the boundary. Points are allowed to

move tangentially along the boundary. The gradient of d(x, y) gives the (neg-

ative) direction to the closest boundary point, and it comes from numerical

differentiation:

d=feval(fd,p,varargin{:}); ix=d>0; % Find points outside (d>0)

5.6. EXAMPLES IN TWO DIMENSION 51

dgradx=(feval(fd,[p(ix,1)+deps,p(ix,2)],varargin{:})-d(ix))/deps; % Numerical

dgrady=(feval(fd,[p(ix,1),p(ix,2)+deps],varargin{:})-d(ix))/deps; % gradient

p(ix,:)=p(ix,:)-[d(ix).*dgradx,d(ix).*dgrady]; % Project back to boundary

8. Finally, the termination criterion is based on the maximum node movement

in the current iteration (excluding the boundary points):

if max(sqrt(sum(deltat*Ftot(d<-geps,:).^2,2))/h0)<dptol

break;

end

This criterion is sometimes too tight, and a high-quality mesh is often

achieved long before termination. In these cases, the program can be inter-

rupted manually, or other tests can be used. One simple but efficient test is

to compute all the element qualities (see below), and terminate if the smallest

quality is large enough.

5.6. Examples in two dimension

5.6.1. Unit Circle. We work directly with d =
√

x2 + y2−1, which is a signed

distance function of the unit circle x2 + y2 = 1. For a uniform mesh, h(x, y) = 1 is

used for mesh generation. The two function is stored in the Cartesian mesh grid with

spatial size ∆x = ∆y = 0.1. The circle has bounding box −1 ≤ x ≤ 1, −1 ≤ y ≤ 1,

with no fixed points. Actually, you can set the bounding box more large or small.

A mesh with element size approximately h0 = 0.1 is generated with below code.

[xx yy] = meshgrid(-2:0.1:2, -2:0.1:2);

dd = sqrt(xx.^2 + yy.^2) - 1;

hh = ones(size(dd));

[p,t]=distmesh2d(@dmatrix,@hmatrix,0.1,[-1,-1;1,1],[], xx, yy, dd, hh);

5.6.2. Unit Circle with Hole. Removing a circle of radius 0.5 from the unit

circle gives the distance function d(x, y) = max(
√

x2 + y2 − 1, 0.5 −
√

x2 + y2).

And this distance function is equivalent as d(x, y) = |0.75 −
√

x2 + y2| − 0.25.

And another example has a distance function d(x, y) = max(
√

x2 + y2 − 1, 0.5 −

5.6. EXAMPLES IN TWO DIMENSION 52

(a) h0 = 0.1 (b)h0 = 0.2

Figure 5.4. Unit circle mesh

√
(x− 0.25)2 + y2). For a uniform mesh, h(x, y) = 1 is used for mesh gener-

ation. The two function is stored in the Cartesian mesh grid with spatial size

∆x = ∆y = 0.1. The circle has bounding box −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, with no

fixed points. Actually, you can set the bounding box more large or small. A mesh

with element size approximately h0 = 0.1 is generated with below code.

[xx yy] = meshgrid(-2:0.1:2,-2:0.1:2);

da=sqrt(xx.^2 + yy.^2)-1;

db=0.5-sqrt(xx.^2+yy.^2);

dd=max(da,db);

hh=ones(size(dd));

[p,t]=distmesh2d(@dmatrix,@hmatrix,0.1,[-1,-1;1,1],[],xx,yy,dd,hh);

5.6.3. Square with Hole. We can replace the outer circle with a square, keep-

ing the circular hole. For make the rectangular cone, consider the distance func-

tion dA(x, y) = max(|x| − 1, |y| − 1) which has the inside region −1 ≤ x ≤ 1 and

−1 ≤ y ≤ 1. And the distance function of outer circle is dB(x, y) = 0.5−
√

x2 + y2.

And the intersection of dA(x, y) and dB(x, y) give the geometry of the square with

hole. For a uniform mesh, h(x, y) = 1 is used for mesh generation. The two function

is stored in the Cartesian mesh grid with spatial size ∆x = ∆y = 0.1. The circle has

bounding box −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, with 4 corner fixed points. Actually, you can

5.6. EXAMPLES IN TWO DIMENSION 53

(a) (b)

Figure 5.5. Unit Circle with Hole

set the bounding box more large or small. A mesh with element size approximately

h0 = 0.1 is generated with below code.

[xx yy] = meshgrid(-2:0.1:2,-2:0.1:2);

da=max(abs(xx)-1,abs(yy)-1);

db=0.5-sqrt(xx.^2+yy.^2);

dd=max(da,db);

hh=ones(size(dd));

[p,t]=distmesh2d(@dmatrix,@hmatrix,0.15,[-1,-1;1,1],[-1,-1;-1,1;1,1;1,-1],xx,yy,dd,hh);

(a) (b)

Figure 5.6. Square with Hole

5.7. MESH GENERATION IN THREE DIMENSION 54

5.7. Mesh Generation in Three Dimension

Many scientific and engineering simulations require 3-D modeling. The bound-

aries become surfaces, and the interior becomes a volume instead of area. A simplex

mesh uses tetrahedra.

The two dimensional mesh generator extends to any dimension by Per-Olof

Persson. And the code distmeshnd.m is given in www-math.mit.edu/∼ pers-

son/mesh. We just modify the ”distmesh2d” code for easy understanding of mesh

generation in three spatial dimensional.

function [p,t]=distmesh3d(fdist,fh,h0,box,fix,varargin)

ptol=.001; ttol=.1; Fscale=1.1; deltat=.1; geps=1e-1*h0; deps=sqrt(eps)*h0;

% 1. Create initial distribution in bounding box

[x,y,z]=ndgrid(box(1,1):h0:box(2,1),box(1,2):h0:box(2,2),box(1,3):h0:box(2,3));

p=[x(:),y(:),z(:)];

% 2. Remove points outside the region, apply the rejection method

p=p(feval(fdist,p,varargin{:})<geps,:);

r0=feval(fh,p,varargin{:});

p=[fix; p(rand(size(p,1),1)<min(r0)^3./r0.^3,:)];

N=size(p,1);

count=0; pold=inf;

while 1

% 3. Retriangulation by Delaunay

if max(sqrt(sum((p-pold).^2,2)))>ttol*h0

pold=p;

t=delaunayn(p);

pmid=(p(t(:,1),:)+p(t(:,2),:)+p(t(:,3),:)+p(t(:,4),:))/4;

t=t(feval(fdist,pmid,varargin{:})<-geps,:);

% 4. Describe each edge by a unique pair of nodes

pair=[t(:,[1,2]);t(:,[1,3]);t(:,[1,4]);t(:,[2,3]);t(:,[2,4]);t(:,[3,4])];

pair=unique(sort(pair,2),’rows’);

% 5. Graphical output of the current mesh

if mod(count,5)==0

simpplot(p,t,’p(:,2)>0’);

view(-45,15); drawnow

end

else

count=count+1;

end

% 6. Move mesh points based on edge lengths L and forces F

bars=p(pair(:,1),:)-p(pair(:,2),:);

L=sqrt(sum(bars.^2,2));

5.7. MESH GENERATION IN THREE DIMENSION 55

L0=feval(fh,(p(pair(:,1),:)+p(pair(:,2),:))/2,varargin{:});

L0=L0*Fscale*(sum(L.^3)/sum(L0.^3))^(1/3);

F=max(L0-L,0);

Fbar=[bars,-bars].*repmat(F./L,1,2*3);

dp=full(sparse(pair(:,[ones(1,3),2*ones(1,3)]),ones(size(pair,1),1)*[1:3,1:3]...

,Fbar,N,3));

dp(1:size(fix,1),:)=0;

p=p+deltat*dp;

% 7. Bring outside points back to the boundary

d=feval(fdist,p,varargin{:}); ix=d>0;

gradd=zeros(sum(ix),3);

dgrad2 = zeros(sum(ix),1);

for ii=1:3

a=zeros(1,3);

a(ii)=deps;

d1x=feval(fdist,p(ix,:)+ones(sum(ix),1)*a,varargin{:});

gradd(:,ii)=(d1x-d(ix))/deps;

end

p(ix,:)=p(ix,:)-d(ix)*ones(1,3).*gradd;

% 8. Termination criterion

if max(deltat*sqrt(sum(dp(d<-geps,:).^2,2)))<ptol*h0, break; end

end

Now we describe steps 1 to 8 in the distmesh3d algorithm.

1. The first step creates a uniform distribution of nodes within the bounding

box of the geometry, corresponding to right triangles:

[x,y,z]=ndgrid(box(1,1):h0:box(2,1),box(1,2):h0:box(2,2),box(1,3):h0:box(2,3));

p=[x(:),y(:),z(:)];

The mesh grid function generates a rectangular grid, given as two vectors x

and y of node coordinates. The coordinates are stored in the N × 3 array p.

2. The next step removes all nodes outside the desired geometry. Only the

interior points with negative distances (allowing a tolerance geps) are kept.

p=p(feval(fdist,p,varargin{:})<geps,:);

Then we evaluate h(x, y) at each node and reject points with a probability

proportional to 1/h(x, y)2. The array of fixed nodes is placed in the first rows

of p.

r0=feval(fh,p,varargin{:});

5.7. MESH GENERATION IN THREE DIMENSION 56

p=[fix; p(rand(size(p,1),1)<min(r0)^3./r0.^3,:)];

N=size(p,1);

L. Now the code enters the main loop, where the location of the N points is

iteratively improved. Initialize the variable pold for the first iteration, and

start the loop.

pold=inf;

while 1

...

end

3. Before evaluating the force function, a Delaunay triangulation determines the

topology of the truss. Normally this is done for p0, and also every time the

points move, in order to maintain a correct topology. To save computing

time, an approximate heuristic calls for a retriangulation when the maximum

displacement since the last triangulation is larger than ttol (relative to the

approximate element size l0).

if max(sqrt(sum((p-pold).^2,2)))>ttol*h0

pold=p;

t=delaunayn(p);

pmid=(p(t(:,1),:)+p(t(:,2),:)+p(t(:,3),:)+p(t(:,4),:))/4;

t=t(feval(fdist,pmid,varargin{:})<-geps,:);

...

end

The node locations after retriangulation are stored in pold, and every

iteration compares the current locations p with pold. The MATLAB de-

launayn function generates a triangulation t of the convex hull of the point

set, and triangles outside the geometry have to be removed. We use a simple

solution here. If the centroid of a triangle has d < 0, then that triangle is

removed. This technique is not entirely robust, but it works fine in many

cases, and it is very simple to implement.

4. The list of triangles t is an array with 6 columns. Each row represents a

triangle by three integer indices (in no particular order). In creating a list

5.7. MESH GENERATION IN THREE DIMENSION 57

of edges, each triangle contributes three node pairs. Since most pairs will

appear twice (the edges are in two triangles), duplicates have to be removed.

pair=[t(:,[1,2]);t(:,[1,3]);t(:,[1,4]);t(:,[2,3]);t(:,[2,4]);t(:,[3,4])];

pair=unique(sort(pair,2),’rows’);

5. The next two lines give graphical output after each retriangulation. The code

about the simpplot function is written in Appendix.

simpplot(p,t,’p(:,2)>0’);

view(-45,15); drawnow

6. Each bar is a two-component vector in barvec; its length is in L.

bars=p(pair(:,1),:)-p(pair(:,2),:);

L=sqrt(sum(bars.^2,2));

The desired lengths L0 come from evaluating h(x, y) at the midpoint of

each bar. We multiply by the scaling factor in equation 5.7 and the fixed

factor Fscale, to ensure that most bars give repulsive forces f > 0 in F.

L0=feval(fh,(p(pair(:,1),:)+p(pair(:,2),:))/2,varargin{:});

L0=L0*Fscale*(sum(L.^3)/sum(L0.^3))^(1/3);

F=max(L0-L,0);

The actual update of the node positions p is in the next block of code.

The force resultant Ftot is the sum of force vectors in Fbar, from all bars

meeting at a node. A stretching force has positive sign, and its direction is

given by the two-component vector in bars. The sparse command is used

(even though Ftot is immediately converted to a dense array!), because of

the nice summation property for duplicated indices.

Fbar=[bars,-bars].*repmat(F./L,1,2*3);

dp=full(sparse(pair(:,[ones(1,3),2*ones(1,3)]),ones(size(pair,1),1)*[1:3,1:3]...

,Fbar,N,3));

dp(1:size(fix,1),:)=0;

p=p+deltat*dp;

Note that Ftot for the fixed nodes is set to zero. Their coordinates are

unchanged in p.

5.8. EXAMPLE IN THREE DIMENSION 58

7. If a point ends up outside the geometry after the update of p, it is moved

back to the closest point on the boundary (using the distance function). This

corresponds to a reaction force normal to the boundary. Points are allowed to

move tangentially along the boundary. The gradient of d(x, y) gives the (neg-

ative) direction to the closest boundary point, and it comes from numerical

differentiation.

d=feval(fdist,p,varargin{:}); ix=d>0;

gradd=zeros(sum(ix),3);

dgrad2 = zeros(sum(ix),1);

for ii=1:3

a=zeros(1,3);

a(ii)=deps;

d1x=feval(fdist,p(ix,:)+ones(sum(ix),1)*a,varargin{:});

gradd(:,ii)=(d1x-d(ix))/deps;

end

p(ix,:)=p(ix,:)-d(ix)*ones(1,3).*gradd;

8. Finally, the termination criterion is based on the maximum node movement

in the current iteration (excluding the boundary points).

if max(deltat*sqrt(sum(dp(d<-geps,:).^2,2)))<ptol*h0

break;

end

This criterion is sometimes too tight, and a high-quality mesh is often

achieved long before termination. In these cases, the program can be inter-

rupted manually, or other tests can be used. One simple but efficient test is

to compute all the element qualities (see below), and terminate if the smallest

quality is large enough.

5.8. Example in three dimension

5.8.1. Unit Sphere. The sphere uses nearly the same manner as the circle.

The corresponding signed distance function d(x, y, z) =
√

x2 + y2 + z2 − 1 of the

unit sphere is used. The mesh size function h(x, y, z) = 1 is used for the simplicity.

The circle has bounding box −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, and −1 ≤ z ≤ 1, with no

5.9. CAUTION 59

fixed points. And the three dimensional uniform Cartesian grid with ∆x = ∆y =

∆z = 0.1. The expected mesh size is chosen h0 = 0.2.

[xx,yy,zz] = ndgrid(-2:0.1:2,-2:0.1:2,-2:0.1:2);

dd = sqrt(xx.^2 + yy.^2 + zz.^2) - 1;

hh = ones(size(dd));

[p,t]=distmesh3d(@dmatrix3d,@hmatrix3d,0.2,[-1,-1,-1;1,1,1],[],xx,yy,zz,dd,hh);

(a) (b)

Figure 5.7. Unit Sphere mesh

5.9. Caution

There is a constraint between the mesh size and the element size. The Cartesian

grid is given, so that the mesh size is fixed. For choosing the element size, we

has a constraint as follow: h0 >
√

(∆x)2 + (∆y)2 in two spacial dimension, and

h0 >
√

(∆x)2 + (∆y)2 + (∆z)2 in three spacial dimension. The typical example is

shown below codes. This is same simulation in section 5.6.1 without the spatial size,

∆x = ∆y = 0.2. Although the result figure is close the solution, it is not converge.

[xx yy] = meshgrid(-2:0.2:2, -2:0.2:2);

dd = sqrt(xx.^2 + yy.^2) - 1;

hh = ones(size(dd));

5.10. GRADIENT LIMITING 60

[p,t]=distmesh2d(@dmatrix,@hmatrix,0.1,[-1,-1;1,1],[], xx, yy, dd, hh);

5.10. Gradient Limiting

An important requirement on the size function is that the ratio of neighboring

element sizes in the generated mesh is less than a given value G. This corresponds

to a limit on the gradient |∇h(x)| ≤ g with g ≡ G − 1. In some simple cases, this

can be built into the size function explicitly. For example, a ”point-source” size

constraint h(y) = h0 in a convex domain can be extended as h(x) = h0 + g|x − y|,
and similarly for other shapes such as edges.

One way to limit the gradients of a discretized size function is to iterate over the

edges of the background mesh and update the size function locally for neighboring

nodes [35]. When the iterations converge, the solution satisfies |∇h(x)| ≤ g only

approximately, in a way that depends on the mesh. Another method is to build a

balanced octree, and let the size function be related to the size of the octree cells

[37]. This data structure is used in the quadtree meshing algorithm [36], and the

balancing guarantees a limited variation in element sizes, by a maximum factor of two

between neighboring cells. However, when used as a size function for other meshing

algorithms it provides an approximate discrete solution to the original problem, and

it is hard to generalize the method to arbitrary gradients g or different background

meshes.

5.10.1. The Gradient Limiting Equation. We now consider how to limit

the magnitude of the gradients of a function h0(x), to obtain a new gradient limited

function h(x) satisfying |∇h(x)| ≤ g everywhere. We require that h(x) ≤ h0(x),

and at every x we want h to be as large as possible. We claim that h(x) is the

steady-state solution to the following Gradient Limiting Equation:

∂h

∂t
+ |∇h| = min(|∇h|, g), (5.8)

with initial condition

5.11. EXAMPLES FOR GRADIENT LIMITING 61

h(t = 0, x) = h0(x). (5.9)

When |∇h| ≤ g, equation (5.8) gives that ht = 0, and h will not change with time.

When |∇h| > g, the equation will enforce |∇h| = g (locally), and the positive sign

multiplying |∇h| ensures that information propagates in the direction of increasing

values. At steady-state we have that |∇h| = min(|∇h|, g), which is the same as

|∇h| ≤ g.

For the special case of a convex domain in Rn and constant g, we can derive an

analytical expression for the solution to equation (5.8), showing that it is indeed the

optimal solution:

Theorem 5.10.1. Let Ω ⊂ Rn be a bounded convex domain, and I = (0, T) a

given time interval. The steady-state solution h(x) = limT→∞ h(x, T) to
{

∂h
∂t + |∇h| = min(|∇h|, g), (x, t) ∈ Ω× I,
h(x, t)|t=0 = h0(x), x ∈ Ω.

(5.10)

is

h(x) = min
y

(h0(y) + g|x− y|). (5.11)

Note that the solution equation (5.11) is composed of infinitely many point-

source solutions as described before. We could in principle define an algorithm

based on equation (5.11) for computing h from a given h0 (both discretized). Such

an algorithm would be trivial to implement, but its computational complexity would

be proportional to the square of the number of node points. Instead, we can solve

an equation (5.10) using efficient Hamilton-Jacobi solvers.

5.11. Examples for Gradient Limiting

5.11.1. Unit Circle. A signed distance function d =
√

x2 + y2 − 1 is used,

which has the interface, the unit circle x2 + y2 = 1. To make fine near the interface

for generating more close the curve, the mesh size function is chosen h(x, y) =

1− 5d(x, y). The Cartesian mesh grid with spatial size ∆x = ∆y = 0.05 is set. The

5.11. EXAMPLES FOR GRADIENT LIMITING 62

circle has bounding box −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, with no fixed points. Actually,

you can set the bounding box more large or small. We wish to get the mesh point

with element size approximately h0 = 0.05 in the boundary.

[xx yy] = meshgrid(-2:0.05:2, -2:0.05:2);

dd = sqrt(xx.^2 + yy.^2) - 1;

hh = ones(size(dd)) - 5.0*dd;

[p,t]=distmesh2d(@dmatrix,@hmatrix,0.05,[-1,-1;1,1],[], xx, yy, dd, hh);

Coarse Fine

Figure 5.8

5.11.2. Unit Circle and Square with Hole. Removing a circle of radius 0.5

from the unit circle gives the distance function d(x, y) = max(
√

x2 + y2 − 1, 0.5 −
√

x2 + y2). For a adaptive mesh, h(x, y) = 4
√

x2 + y2 is used for mesh generation.

The Above mesh size function has 1 value near the inner circle, and 4 value near the

outer circle. The two function is stored in the Cartesian mesh grid with spatial size

∆x = ∆y = 0.05. The circle has bounding box −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, with no

fixed points. Actually, you can set the bounding box more large or small. In here,

an element size h0 = 0.05 means the mesh size near the inner hole.

[xx yy] = meshgrid(-2:0.05:2,-2:0.05:2);

da=sqrt(xx.^2 + yy.^2)-1;

db=0.5-sqrt(xx.^2+yy.^2);

dd=max(da,db);

hh=4*sqrt(xx.^2+yy.^2);

[p,t]=distmesh2d(@dmatrix,@hmatrix,0.05,[-1,-1;1,1],[],xx,yy,dd,hh);

5.11. EXAMPLES FOR GRADIENT LIMITING 63

We can replace the outer circle with a square, keeping the circular hole. For make

the rectangular cone, consider the distance function dA(x, y) = max(|x| − 1, |y| − 1)

which has the inside region −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1. And the distance function

of outer circle is dB(x, y) = 0.5 −
√

x2 + y2. And the intersection of dA(x, y) and

dB(x, y) give the geometry of the square with hole. The curvature near the inner

circle is high more in the square, so the mesh size function h(x, y) = 4
√

x2 + y2 is

considerable. The two function is stored in the Cartesian mesh grid with spatial

size ∆x = ∆y = 0.05. The circle has bounding box −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, with

4 corner fixed points. Actually, you can set the bounding box more large or small.

The initially h0 = 0.05 is used, but the rejection method and the mesh size function

effect like as figure 5.9.

[xx yy] = meshgrid(-2:0.05:2,-2:0.05:2);

da=max(abs(xx)-1,abs(yy)-1);

db=0.5-sqrt(xx.^2+yy.^2);

dd=max(da,db);

hh=4*sqrt(xx.^2+yy.^2);

[p,t]=distmesh2d(@dmatrix,@hmatrix,0.05,[-1,-1;1,1],[-1,-1;-1,1;1,1;1,-1],xx,yy,dd,hh);

Figure 5.9

5.11. EXAMPLES FOR GRADIENT LIMITING 64

5.11.3. Cylinder with Spherical Hole. For a cylinder with radius 1 and the

height from z = −1 to z = 1, we write d1, d2, and d3 for the cylinder surface and

the top and bottom.

d1(x, y, z) =
√

x2 + y2 − 1, (5.12)

d2(x, y, z) = z − 1, (5.13)

d3(x, y, z) = −z − 1. (5.14)

And approximate distance function is then formed by intersection

d̃ = max(d1, max(d2, d3)). (5.15)

This would be sufficient if the ”corner points” along the curves x2 + y2 = 1,

z = ±1 were fixed by an initial node placement. Better results can be achieved by

correcting distance function using distances to the two curves.

d4(x, y, z) =
√

d1(x, y, z)2 + d2(x, y, z)2, (5.16)

d5(x, y, z) =
√

d1(x, y, z)2 + d3(x, y, z)2. (5.17)

These functions should be used where the intersections of d1, d2 and d1, d3

overlap, that is, when they both are positive.

d =





d4, if d1 > 0 and d2 > 0,
d5, if d1 > 0 and d3 > 0,

d̃, otherwise.
(5.18)

Figure 5.10 shows a mesh for the difference between this cylinder and a ball of ra-

dius 0.5. We use a finer resolution close to this ball, h(x, y, z) = min(4
√

x2 + y2 + z2−
1, 2), and h0 = 0.1. Commend code is:

[p,t]=distmesh3d(@fd,@fh,0.1,[-1,-1,-1;1,1,1],[]);

5.11. EXAMPLES FOR GRADIENT LIMITING 65

In this case, we did not use the Cartesian grid, alternatively use the analytical

distance function as below function code fd and fh.

function d=fd(p)

r=sqrt(p(:,1).^2+p(:,2).^2);

z=p(:,3);

d1=r-1;

d2=z-1;

d3=-z-1;

d4=sqrt(d1.^2+d2.^2);

d5=sqrt(d1.^2+d3.^2);

d=max(max(d1,d2),d3);

ix=d1>0 & d2>0;

d(ix)=d4(ix);

ix=d1>0 & d3>0;

d(ix)=d5(ix);

dsphere = 0.5-sqrt(p(:,1).^2+p(:,2).^2+p(:,3).^2);

d=max(d,dsphere);

function h=fh(p)

h1=4*sqrt(sum(p.^2,2))-1;

h=min(h1,2);

5.11. EXAMPLES FOR GRADIENT LIMITING 66

(a) (b)

Figure 5.10. Cylinder with Spherical Hole

67

Chapter 6

Results of Mesh Generation

6.1. Lake-Shaped Map

In [27], author show the various methods for making automatical mesh size

function, and show the simulation. Figure 6.1 is taken in the reference figure [27] to

show the evolution. The image segmentation method in [38] is used to get the figure.

Then we evolve the a singed distance function from the phase-field data which is

given in the segment method. The 512×512 mesh grid is used in the computational

domain (0, 1) × (0, 1). Figure 6.1 (a) is uniform mesh and (b) is adaptive mesh for

making detail in the curve.

(a) (b)

Figure 6.1. Generated mesh

6.2. RED BLOOD CELL 68

6.2. Red Blood Cell

In [34], Timothy and Philip present two mathematical models that describe

human red blood cells (RBCs). In this reference, there are corresponding Cartesian

equations of a discocyte and somatocye.

6.2.1. Discocyte. Discocyte shapes are generated by the corresponding Carte-

sian equation as follows:

φ(x, y, z) = (x2 + y2)2 + P (x2 + y2) + Qz2 + R (6.1)

where the coefficients P , Q, and R are given by

P = (1− 2m)d2/4m,

Q = (1−m)d4/16a2m,

R = (m− 1)d4/16m).

We use the uniform Cartesian mesh grid with increment ∆x = ∆y = ∆z = 0.1 and

the computational domain is [−4.5, 4.5] × [−4.5, 4.5] × [−1.5, 1.5]. And the initial

mesh size of the mesh point is h0 = 0.3.

Figure 6.2

6.2. RED BLOOD CELL 69

6.2.2. Stomatocyte. Stomatocytes are modelled in two halves where p = 3

and 2 for the top and bottom of the cell, respectively. The Cartesian expression of

p = 3 is:

φ(x, y, z) = (x2 + y2)4 + A(x2 + y2)3 + B(x2 + y2)2 + C(x2 + y2) + Dz2 + E = 0(6.2)

where A, B, C, D, and E are

A = −(4m1 − 3)d2/4m1,

B = 3(1− 3m1 + 2m2)d4/16m2
1,

C = −(m1 − 1)2(4m1 − 1)d6/64m3
1,

D = (1−m1)3d8/256a2
1m

3
1,

E = (m1 − 1)3d8/256m3
1. (6.3)

Similarly the Cartesian expression when p = 2 is

φ(x, y, z) = (x2 + y2)3 + F (x2 + y2)2 + G(x2 + y2) + Hz2 + I = 0 (6.4)

where the coefficients F , G, H, and I are

F = −(3m2 − 2)d2/4m2,

G = (1− 4m2 + 3m2
2)d

4/16m2
2,

H = (1−m2)2d6/64a2
2m

2
2,

I = −(m2 − 1)2d6/64m2
2. (6.5)

In equations 6.3 and 6.5, m1 and m2 denote the specific values of m that generate

each half of the stomatocyte surface. We use the uniform Cartesian mesh grid with

increment ∆x = ∆y = ∆z = 0.1 and the computational domain is [−4.5, 4.5] ×
[−4.5, 4.5]× [−1.5, 1.5]. And the initial mesh size of the mesh point is h0 = 0.3.

6.2. RED BLOOD CELL 70

Figure 6.3

71

Chapter 7

Conclusion

We devote the represent the mesh generators and show the intuitive examples to

easy access of the generating code and for understanding deeply. And we organize the

MATLAB code for making a signed distance function given some initial data. The

evolved data is stored in the uniform Cartesian grid points and it can be composed

with the Distmesh code. Therefore, we are applied in two cases: the lake-shaped

map and the red blood cells. Apart from being simple of the code, it seems that the

algorithm generates meshes of high quality.

72

Appendix A

The used codes

function simpplot(p,t,expr,bcol,icol)

if nargin<4, bcol=.9*ones(1,3); end

if nargin<5, icol=.6*ones(1,3); end

dim=size(p,2);

switch dim

case 2

trimesh(t,p(:,1),p(:,2),0*p(:,1),’facecolor’,’none’,’edgecolor’,’k’);

view(2)

axis equal

axis off

case 3

tri1=surftri(p,t);

if nargin>2 & ~isempty(expr)

incl=find(eval(expr));

t=t(any(ismember(t,incl),2),:);

tri1=tri1(any(ismember(tri1,incl),2),:);

tri2=surftri(p,t);

tri2=setdiff(tri2,tri1,’rows’);

h=trimesh(tri2,p(:,1),p(:,2),p(:,3));

set(h,’facecolor’,icol,’edgecolor’,’k’);

hold on

end

h=trimesh(tri1,p(:,1),p(:,2),p(:,3));

hold off

set(h,’facecolor’,bcol,’edgecolor’,’k’);

axis equal

cameramenu

otherwise

error(’Unimplemented dimension.’);

end

function tri=surftri(p,t)

faces=[t(:,[1,2,3]);

t(:,[1,2,4]);

t(:,[1,3,4]);

t(:,[2,3,4])];

73

node4=[t(:,4);t(:,3);t(:,2);t(:,1)];

faces=sort(faces,2);

[foo,ix,jx]=unique(faces,’rows’);

vec=histc(jx,1:max(jx));

qx=find(vec==1);

tri=faces(ix(qx),:);

node4=node4(ix(qx));

v1=p(tri(:,2),:)-p(tri(:,1),:);

v2=p(tri(:,3),:)-p(tri(:,1),:);

v3=p(node4,:)-p(tri(:,1),:);

ix=find(dot(cross(v1,v2,2),v3,2)>0);

tri(ix,[2,3])=tri(ix,[3,2]);

function d=dmatrix(p,xx,yy,dd,varargin)

d=interp2(xx,yy,dd,p(:,1),p(:,2),’*linear’);

function h=hmatrix(p,xx,yy,dd,hh,varargin)

h=interp2(xx,yy,hh,p(:,1),p(:,2),’*linear’);

function d=dmatrix3d(p,xx,yy,zz,dd,varargin)

d=interpn(xx,yy,zz,dd,p(:,1),p(:,2),p(:,3),’*linear’);

function h=hmatrix3d(p,xx,yy,zz,dd,hh,varargin)

h=interpn(xx,yy,zz,hh,p(:,1),p(:,2),p(:,3),’*linear’);

74

Bibliography

[1] Bloomenthal, J., Bajaj, C., Blinn, J., Cani-Gascuel, M.-P., Rockwood, A., Wyvill, B., and
Wyvill, G., Introduction to Implicit Surfaces, Morgan Kaufmann Publishers Inc., San Francisco
(1997).

[2] Osher, S. and Sethian, J., Fronts Propagating with Curvature Dependent Speed: Algorithms
Based on Hamilton.Jacobi Formulations, J. Comput. Phys. 79, 12-49 (1988).

[3] Chopp, D., Computing Minimal Surfaces via Level Set Curvature Flow, J. Comput. Phys. 106,
77-91 (1993).

[4] Mulder, W., Osher, S., and Sethian, J., Computing Interface Motion in Compressible Gas
Dynamics, J. Comput. Phys. 100, 209-228 (1992).

[5] Adalsteinsson, D. and Sethian, J., A Fast Level Set Method for Propagating Interfaces, J.
Comput. Phys. 118, 269-277 (1995).

[6] Peng, D., Merriman, B., Osher, S., Zhao, H.-K., and Kang, M., A PDE-Based Fast Local Level
Set Method, J. Comput. Phys. 155, 410-438 (1999).

[7] Merriman, B., Bence, J., and Osher, S., Motion of Multiple Junctions: A Level Set Approach,
J. Comput. Phys. 112, 334-363 (1994).

[8] Bruckstein, A., On Shape from Shading, Comput. Vision Graphics Image Process. 44, 139-154
(1988).

[9] Kimmel, R. and Bruckstein, A., Shape Offsets via Level Sets, Computer Aided Design 25,
154-162 (1993).

[10] Osher, S., A Level Set Formulation for the Solution of the Dirichlet Problem for Hamil-
ton.Jacobi Equations, SIAM J. Math. Anal. 24, 1145-1152 (1993).

[11] Rouy, E. and Tourin, A., A Viscosity Solutions Approach to Shape-From- Shading, SIAM J.
Num. Anal. 29, 867-884 (1992).

[12] Sussman, M., Smereka, P., and Osher, S., A Level Set Approach for Computing Solutions to
Incompressible Two-Phase Flow, J. Comput. Phys. 114, 146-159 (1994).

[13] Russo, G. and Smereka, P., A Remark on Computing Distance Functions, J. Comput. Phys.
163, 51-67 (2000).

[14] Fedkiw, R., Aslam, T., Merriman, B., and Osher, S., A Non-Oscillatory Eulerian Approach to
Interfaces in Multimaterial Flows (The Ghost Fluid Method), J. Comput. Phys. 152, 457-492
(1999).

[15] Osher, S. and Sethian, J., Fronts Propagating with Curvature Dependent Speed: Algorithms
Based on Hamilton.Jacobi Formulations, J. Comput. Phys. 79, 12.49 (1988).

[16] Strikwerda, J., Finite Difference Schemes and Partial Differential Equations, Wadsworth &
Brooks/Cole Advanced Books and Software, Pacific Grove, California (1989).

[17] Shu, C.W. and Osher, S., Efficient Implementation of Essentially Non- Oscillatory Shock Cap-
turing Schemes, J. Comput. Phys. 77, 439.471 (1988).

[18] Shu, C.W. and Osher, S., Efficient Implementation of Essentially Non- Oscillatory Shock Cap-
turing Schemes II (two), J. Comput. Phys. 83, 32.78 (1989).

[19] Heath, M., Scientific Computing, The McGraw-Hill Companies Inc. (1997).

75

[20] Osher, S. and Shu, C.-W., High Order Essentially Non-Oscillatory Schemes for Hamilton.Jacobi
Equations, SIAM J. Numer. Anal. 28, 902.921 (1991).

[21] Liu, X.-D., Osher, S., and Chan, T., Weighted Essentially Non-Oscillatory Schemes, J. Comput.
Phys. 126, 202.212 (1996).

[22] Jiang, G.-S. and Peng, D., Weighted ENO Schemes for Hamilton Jacobi Equations, SIAM J.
Sci. Comput. 21, 2126.2143 (2000).

[23] Jiang, G.-S. and Shu, C.-W., Efficient Implementation of Weighted ENO Schemes, J. Comput.
Phys. 126, 202.228 (1996).

[24] Fedkiw, R., Merriman, B., and Osher, S., Simplified Upwind Discretization of Systems of
Hyperbolic Conservation Laws Containing Advection Equations, J. Comput. Phys. 157, 302.326
(2000).

[25] Godunov, S.K., A Finite Difference Method for the Computation of Discontinuous Solutions
of the Equations of Fluid Dynamics, Mat. Sb. 47, 357-393 (1959).

[26] Persson,P.,and Strang, G. A Simple Mesh Generator in Matlab, SIAM Review, 329-346. (2004)
[27] Persson,P., PDE-based gradient limiting for mesh size functions, Proceedings of 13th interna-

tional meshing roundtable, 2004, ann.jussieu.fr
[28] David A. Field. Laplacian smoothing and delaunay triangulations. Comm. in Applied Numer-

ical Methods, 4, 709-712, (1988).
[29] Frank J. Bossen and Paul S. Heckbert. A pliant method for anisotropic mesh generation. In

Proceedings of the 5th International Meshing Roundtable, pages 63-76. Sandia Nat. Lab.,
(1996).

[30] J.R. Shewchuk, Triangle: Engineering a 2D quality mesh generator and Delaunay triangula-
tor, Lecture Notes in Computer Science, 1148,in: M.C. Lin, D. Manocha, Editors, Applied
Computational Geometry: Towards Geometric Engineering, First ACM Workshop on Applied
Computational Geometry, Springer-Verlag, Berlin, pages 203-222. (1996).

[31] Kenji Shimada and David C. Gossard. Bubble mesh: automated triangular meshing of non-
manifold geometry by sphere packing. In SMA ’95: Proceedings of the Third Symposium on
Solid Modeling and Applications, pages 409-419, 1995.

[32] Herbert Edelsbrunner. Geometry and topology for mesh generation, volume 7 of Cambridge
Monographs on Applied and Computational Mathematics. Cambridge University Press, Cam-
bridge, 2001.

[33] Geoff Wyvill, Craig McPheeters, and Brian Wyvill. Data structure for soft objects. The Visual
Computer, 2(4):227-234, 1986.

[34] Timothy J. Larkin and Philip W. Kuchel. Mathematical Models of Naturally ”Morphed” Hu-
man Erythrocytes: Stomatocytes and Echinocytes, Bulletin of Mathematical Biology Volume
72, Number 6, 1323-1333.

[35] Houman Borouchaki, Frediric Hecht, and Pascal J. Frey. Mesh gradation control. In Proceedings
of the 6th International Meshing Roundtable, pages 131.141. Sandia Nat. Lab., October 1997.

[36] M. A. Yerry and M. S. Shephard. A modified quadtree approach to finite element mesh gener-
ation. IEEE Comp. Graph. Appl., 3(1):39.46, 1983.

[37] Pascal J. Frey and Loc Marechal. Fast adaptive quadtree mesh generation. In Proceedings of
the 7th International Meshing Roundtable, pages 211.224. Sandia Nat. Lab., October 1998.

[38] Yibao Li and Junseok Kim, A fast and accurate numerical method for medical image segmen-
tation, J. KSIAM Vol 14, No. 4, pp. 201-210, 2010.

