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coarsening in a binary mixture. Explicit, fully implicit, Crank-Nicolson, and unconditionally gradient
stable schemes are considered. In this paper, we show the solvability conditions of the numerical
schemes and the decreasing property of total energy using eigenvalues of the Hessian matrix of the
energy functional. We also present the pointwise boundedness of the numerical solution for the Allen-
Cahn equation. To compare the accuracy and numerical efficiency of these methods, numerical experi-
ments such as traveling wave and motion by mean curvature are performed. Numerical results show that
Crank-Nicolson and nonlinearly stabilized splitting schemes are almost close to the analytic solution.
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IE;(]l;llllcclltt However, if a large time step is used in the numerical test, we have only two results with linearly and
Crank-Nicolson nonlinearly stabilized splitting schemes in spite of having large gaps between analytic solution and
Unconditionally gradient stable numerical results. The other numerical schemes except for linearly and nonlinearly stabilized splitting
schemes have unstable results when large time step is used.
© 2015 Elsevier B.V. All rights reserved.
1. Introduction Differentiating the energy £(¢) with respect to t gives

In this paper, we shall present a brief review and a critical d " (F ()
comparison of the performance of several numerical schemes for ag (¢) = / ( &2

b0+ V6 V4, ) dx
solving the Allen-Cahn (AC) equation [1]:

F(¢) ) / 2
! = —A dx = — dx <0, 4
00 _ PO pyy xeq o<t " [ (F a0 )aax=- [ @rax<o @)
where Q c R (d =1,2,3) is a domain. ¢(x,t) is the difference where the integration by parts and the boundary condition (2) are
between the concentrations of the two mixtures’ components and used. Therefore, the total energy is non-increasing in time. The AC
F(¢) = 0.25(¢* — 1)2. The parameter € is the gradient energy coeffi- Eq. (1) was originally introduced as a mathematical model for anti-

phase domain coarsening in a binary alloy [1]. The equilibrium con-
figuration of the Ginzburg-Landau free energy functional has been
n-V¢=0ondQ, (2) applied to a wide range of problems such as phase transitions [2],

where n denotes the normal vector on Q. The AC equation is the coupled with the Navier-Stokes equation [3,4], energy minimizers

[2-gradient flow of the following total free energy functional: [5], a gradient flow of a lower semicontinuous convex function
[6], the motion by mean curvature flows [7], image analysis

F ‘1 _ . . .

&) = / ( (Z)) 4o \V¢|Z>dx. (3) [8-12], crystal growth [13], vamsotroplc equatlpqs '[14,15],

€ 2 vector-valued Allen-Cahn equation [12,16,17], precipitation and

dissolution [18], pattern dynamics of reaction-diffusion equations

* Corresponding author. Tel.: +82 2 3290 3077; fax: +82 2 929 8562. [19,20], and delgen.erate diffusion [2.1.]' Erm.r estimates and StAablllty

E-rmai L ) ) | were also studied in [22,23]. In addition, high accuracy solution for
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cient related to the interfacial energy. The boundary condition is
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This paper is organized as follows. In Section 2, we describe
numerical analysis such as solvability, the total energy decrease,
and the boundedness of the numerical solution. We present the
numerical results in Section 3. In Section 4, we conclude.

2. Numerical analysis

We present various numerical schemes for the AC equation. For
simplicity, we discretize the AC equation in one-dimensional space
Q = (a,b). Higher dimensional discretizations are similarly defined.
Let N be a positive even integer, h = (b — a)/N be the uniform mesh
size, and Q, = {x; = (i — 0.5)h, 1 < i < N} be the set of cell-centers.
Let ¢} be approximations of ¢(x;, nAt), where At = T/N; is the time
step, T is the final time, N, is the total number of time steps, and

= (¢}, ¢5,...,¢y)- Let a discrete differentiation operator be
thﬁ,h (¢f.1 —#7)/h, then the zero Neumann boundary
condition (2) is defined as
Vh(,bg = Vh(/),"w% =0. (5)

We then define a discrete Laplacian by Ay¢; = (Vndm% =V ¢,-,%> / h
and discrete L-inner products by

N N
(b ¥)n =hd gy and  (Va, Vith)y = B Viebiyy Vi -

i-1 i-0

Note that a discrete summation by parts holds with the

boundary condition (5), i.e., (And, W), = (¢, Ap¥), = —(Vie, V).
We also define the discrete norms as ||¢7 = (¢, ), and
|, = maxi<icn|¢;]. We consider the following six numerical
schemes for Eq. (1) and compare their accuracy and performance
by using numerical experiments:

n+1
Explicit qb, _di (2(7)‘) +Angy, (6)
n+17 " {1+17 {1+1 3
Implicit iAt o _9 6(2' )+Ah¢?+1~, 7)
{1+17¢{1 '?*1,( (1+1)3 1
Crank—Nicolson =——="= 5z 3 Ad)"” (8)
$i—(¢)) 1
+#+5Ah¢?,
M gn o gn (o
Nonlinear splitting IAt LT 62’ +Apg, 9)
n+l _ gn n+1 m3
Linear splitting - v 39— d) — () +Ang} ™, (10)

wherei=1,...,N.
2.1. Solvability of the schemes

Let us consider the following discrete AC equation:

Mg o) — (1 - o)) + ol + (1 - p)gl
At €2

+ Ay (1 =7)9)), (11)

where o, 8, and ) are real numbers. Note that

Explicit a=p=7y=0, (12)

Implicit a=pf=y=1, (13)
Crank—Nicolson a=f=7= % (14)
Nonlinear splitting a«=1, =0, y=1, (15)

Linear splitting «=0, f=-2, y=1. (16)
Here, the explicit scheme is uniquely solvable in Eq. (11). There-

fore, we focus on the solvability of the other four schemes.
Bearing in mind that we want to have Eq. (11) as the Euler

equation of a functional, we consider the following functional

G9) = 5 6~ o
n\3 n
+<a¢ L= pp (1-pe 7¢>
h

4e? € 2e? €2
+ 51l + (1 =) (Vad", Vi) (17)

Here, we define the notation by ¢y = (¢, dots, ..., dnPy). Let @
and y # 0 be fixed vectors and s be a real number variable. We con-
sider a quartic polynomial H in s by

H(S) = G(¢ + )
~ G(#) +s<¢*A‘t"’ +

2 vA w12
+52<2¢At+( ) ﬁ)¢/2h¢7¢> +53<o¢¢€2.,, 7¢>
h h

o’

And the second derivative is derived as

<(¢ +5)° 92 + Vil (19)

" 1 B
H(6) = (3¢ ) 0k +
If the parameters satisfy o > 0, < €2/At, and y > 0O, then
H"(s) has a strictly positive value. It means that the polynomial H
is strictly convex and G(¢) is bounded below. Thus, there is the
unique minimizer ¢, i.e., G(¢*) < G(¢) for all ¢. Since ¢* is the crit-
ical point, we have,

, * M *\3 1 _ 3 * .1 o n
H(O):<¢ 4" ue) (-0 g (1-pe
—Ang” — (1 "/)Ah¢"7'/’> =0 (20)
h

Since Eq. (19) holds regardless of y, we have

¢ — " —o(¢)’ —(1-0)(¢") + " +(1—p)¢"
At €
+An(9" + (1= 7)¢"). (21)

Next, we want to show that the minimizer is unique. Let us
assume ¢ is another G(¢) = G(¢*) and
¥ = ¢ — ¢" # 0. By using the strict convexity of H, we have

minimizer, i.e.,

G +0.59) = H(05) < HOTHD _ G#) )

=G(¢"),

which leads to a contradiction that ¢* is the minimizer.

For linearly and nonlinearly stabilized splitting schemes,
H"(s) > 0 is satisfied with any time step size. Crank-Nicolson and
implicit schemes holds if At < 2€? and At < €2, respectively. From
now on, we define the unique minimizer as ¢™! and it satisfies
Eq. (21).
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2.2. Stability of the schemes

A numerical scheme is defined to be unconditionally gradient
stable if the discrete total free energy is non-increasing for any size
of a time step At. Eyre’s theorem [28] shows that an uncondition-
ally gradient stable algorithm results for the AC equation if we can
split the free energy appropriately into contractive and expansive
parts,

b
e0)= [ (4 5 )dr =) - 0) 22)

and then treat the contractive part &.(¢) implicitly and the
expansive part & (¢) explicitly. The main purpose of this section is
to show that Egs. (9) and (10) inherit characteristic property
such as a decrease in the total energy. To show the decrease in
the discrete total energy, first, we define a discrete Lyapunov
functional,

h N 2 h N-1 n 2
#)= g () 1 45 ) |Vl
i= i=
for each n. It is convenient to decompose £"(¢") into three parts:

th

(23)

‘Vh ¢,+_

)

We define a decomposition of £"(¢") as £l (¢") = —pED (¢™)+
YD (@) + o (¢") and  E5(¢") = (1-BEV (") — (1 —9)E? -
(1 —a)&® where «, f, and y are real numbers as in (12)-(16),
ie., EM(¢") = (@) — £"(¢™). The numerical scheme in Eq. (9) can
be regarded as the form of a gradient of the discrete total energy,
ie.,

n+1 — ¢’x 1 h pn+l1 1 h( n
At :_Evgc(¢ )1+Ev£e(¢ )iv
Given the discrete energy functional £7(¢), one defines the

Hessian H” to be the Jacobian of the V¥ (¢) and hence the Hes-
sian for i = 1,2, 3 is represented by

fori=1,...,N. (24)

{H“),H(Z),H“)}
_ {Vzg(l)(¢)’v25(2)(¢)7v25(3)(¢)}
1 0 1 -1 0
, 1 -1 2 -1
— 6_2 7h )
1 -1 2 -1
0 1 0 -1 1
¢t 0
¢
3h
e
Py
0 oy

where we have used the boundary condition in Eq. (5). The

eigenvalues of H", H?, and H® are
h 4 L k-1m | 3h
)"l(:) = ga )‘;f) = E SIH2 ( ZN) /“l(<3) = ?4’%7 (25)

where k =1,2,..., N, respectively. Note that all eigenvalues in (25)
are non-negative. Let v, = w;/|wy| be the orthonormal eigenvector

corresponding to the eigenvalues /” where wj = (cos("g%,

cos2& DT cos a””;,{,’“”“), then ¢™' — ¢" can be expressed in
terms of Vi as

N
P =" =D v (26)
k=1
The decrease of the discrete energy functional is established in
the following theorem: If ¢"*! is the solution of Eq. (9) with a given
¢", then

gh(¢n+1) < {,‘h(qﬁn), (27)

Next, we prove Eq. (27). This inequality has been shown for the
nonlinear gradient stabilized scheme in [29] and here we consider
all five finite difference schemes. Using an exact Taylor expansion

of £"(¢™) about ¢"*! up to the second order, we have
gh(¢n+1) _gh(¢n) _ <%vgh(¢n+])7¢n+1 _ ¢n>
h
<2h VEENE(9" — 9" 0" - ¢"> . (28)
h

where &= 0¢" + (1 — 0)¢™"' and 0<
the right-hand side of Eq. (28),
theorem, we have

0 < 1. For the first term of
using Eq. (24) and the mean value

<%v5h(¢ml)’¢ml 7¢n> — <%VE'C’(¢"’1)—%V£§(¢””),¢”” 7¢n>
h h

¢n+17¢n 1 h gt 1 hn n+1 n
- At +Evgc(¢ )7Evge(¢ )s¢ 7¢ >h

<1 (VElg) - VLG4 4,
1
==& (VELm) (@™ - 474" - "),
= {[a-pHY (- pH? (-]
(¢n+1 ¢n) n+1 ¢ >;, (29)

where 5= 04"+ (1 - 0)¢""" and 0 < 0 < 1. Also, for the second

term of the right-hand side of Eq. (28), using
=W 4 £@ 4 £ we have
2 oh n+l _ gn n+l _ n

(V@@ 8  4)

L @ O (gt gy g g

=5 (Y —H® —H?) (9" —¢"), 9" —¢")

1 (1) 2) n+1 n n+1 n
<o ((HY —HZ)(@"1 = ¢).¢"" —¢") . (30)

From the equality (26), and inequalities (29) and (30), we have

) — ")

Zﬁ—l () 1- 2’)) - (3) n+1 n n+1 n
< ([P e g e )
N o/2p-1.4 1- 27,0 1-2
= ).( ) + + ).(3):| Ok Vi, OC[V1>

N
26-1 2-4y 5 (k-1)m 3-3u
:Z<|: 2¢2 + h2 sin N + p5) l’]ﬁ Vi, V]

201,247 (k- Tm 33
Z{zez = (ZN) e ”ﬁ}“i‘ GD

If the right hand side of Eq. (31) is negative, it is guaranteed that
the energy functional is non-increasing. Therefore, the nonlinearly
stabilized splitting scheme (o = 1, 8 = 0,y = 1) inherits the energy

h
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Fig. 1. Growth rate with different wave numbers.

non-increasing property. For the linearly stabilized splitting
scheme (¢« =0,8=-2,7=1), a sufficient condition for having

negative value of Eq. (31) is 17, < /5/6.
2.3. Boundedness of the numerical solution

Next, we show that the decrease of the discrete total energy
functional implies the pointwise boundedness of the numerical
solution for the AC equation. If ¢" is a numerical solution for the
discrete AC equation and £"(¢") < £"(¢"!), then for any
1 <i< N we have

h

2

e (@ = 1) <€) <€), (32)
where we have used Eq. (23). Therefore, we have
16" < \/1+2€y/€"(¢%)/h. (33)

More details can be found in [29].

3. Numerical experiments

We define the width of the transition layer by using the € value.
From an equilibrium profile ¢(x) = tanh (x/ (\/ie)) the concen-
tration field ¢ varies from —0.9 to 0.9 over a distance of about

2v2etanh™' (0.9). Therefore, if we want this value to be about mh
[29], then we should take € as

3.1. Linear stability analysis

We perform a linear stability analysis [29,30]. Linearizing the
AC Eq. (1) around ¢ = 0, then we have

¢

b=+ b (35)

If we assume ¢(x, t) = y(t) cos(kmx), where k is a wave number,
then we get the following from Eq. (1)

W (t) cos(kmx)

W' (t) cos(kmx) = —(km)*y(t) cos(kmx) + a2

Thus, ¥(t) = y(0)e”, where 4 =1/€? — (km)* is a growth rate.
We also define the numerical growth rate by

-1 max<icy ||
IA=zlog | ——~—— .
Tg< ¥(0)

The initial data is given by ¢(x,0) = y(0) cos(kmx) on the com-
putational domain Q= (0,1) with parameters €= 0.02,
N =256, y(0) =0.01, At =0.1h%, and the final time T = 100At.
Fig. 1 represents the linear stability tests of the five different
schemes.

3.2. Decrease of the total energy

Next, we consider the evolution of the discrete total energy. The
initial state is taken to be ¢(x,0) = 0.1rand(x) on Q = (0, 1) with 64
grid points, rand(x) is a random number between —1 and 1. We use
the simulation parameters €4 and At = 0.2h°. In Fig. 2(a), the tem-
poral evolution of the non-dimensional discrete total energy

£"(¢")/E"(¢°) is shown. The total discrete energy is non-increasing.
Also, the inscribed small figures are the concentration fields at the
indicated times. Fig. 2(b) is a snapshot of ¢(x,t) at t = 0.001.

3.3. Traveling wave solutions

One of the exact solutions of the AC equation is the traveling
wave solution: ¢(x,t) = 0.5 — 0.5 tanh [(x - st)/(Zﬁq)], where

s= 3/(\/564) is the speed of the traveling wave [29,31]. Now,
we investigate the performance of the various numerical schemes
such as explicit, fully implicit, CN, NLSS, and LSS methods on the
traveling wave problem. For the numerical tests, we use the spatial
step size h=11/512 on Q = (—1,10). Fig. 3(a) and (b) show the
numerical solutions with two different time step sizes At = 0.1k
and 10h? at T = 140k, respectively. Here, the analytic traveling
wave solution at t =T is represented by the solid line. In Fig. 3
(a), we have all five computational results with At = 0.1h%. The
result with CN method is almost identical with the analytic

€m =mh / [zﬁtanh'l(o.g)] ~ 0.24015mh. (34)
Sh( ny q —&— Explicit
WZO) —a Implicit

0.8}

0.6

0.4}
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0.5

(a)

. 0003 0 r 1
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Fig. 2. (a) Temporal evolution of non-dimensional discrete total energy £"(¢")/£"(¢°) with an initial data, ¢(x,0) = 0.1rand(x). (b) Snapshot of ¢(x,t) at t = 0.001.
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Fig. 4. Comparison of temporal evolutions of the radius with (a) At = 0.1h* and (b) At = 10h? from t = 0 to t = 250h? in two-dimensional space.

solution. NLSS is the third best among all. However, if we use a

large time step At = 10h?, then we have only NLSS and LSS results
as shown in Fig. 3(b). However, there are large discrepancy
between the analytic solution and numerical results with the large
time step size. For NLSS case, interface transition profile is relaxed
a lot. For LSS case, the actual evolution is small.

3.4. Motion by mean curvature

It was formally proved that, as € — 0, the zero level set of ¢
evolves according to the geometric law

Analytic

0.3
O o O Explicit
O O O Implicit
e o o CN
* o o*x ok NLSS
A A A LSS

0.2

0 0.01 0.02 t 0.03
(a) At = 0.1h2

Y S W ,
NN
r(t) %***iiAAa
* %
*

1 1
V_—K_7<R—]+R—2), (36)
where V is the normal velocity of the surface at each point, x is its
mean curvature, and R, R, are the principal radii of curvatures at
the point of the surface [1]. In two-dimensional space, Eq. (36)
becomes V = —1/R.

An initial condition is given as a circle with center (0.5,0.5) and
radius Ry = 0.4 on the computational domain Q = (0,1) x (0,1):

Ro—1/(x—0.5)% + (y — 0.5)
:tanho\/( Py-05"

b(x,y,0) Ve

37)

0.3

0 0.01 002
(b) At = 10h?

0.03

Fig. 5. Comparison of temporal evolutions of the radius with (a) At = 0.1h* and (b) At = 10n* uptoT = 120h? in three-dimensional space.
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Let Ry and R(t) be the initial radius and the radius at time ¢ of the
circle, respectively. Then Eq. (36) becomes dR(t)/dt = —1/R(t).

Therefore, analytic solution is given as R(t) = /R — 2t. In order to

compare the motion by curvature flow with several numerical
schemes, we implement numerical simulations with €g, h = 1/64,

and T = 250h°. Fig. 4(a) and (b) show two results with At = 0.1h*
and At = 10h?, respectively.
When At = 0.1h?, the numerical results with various schemes

are close to analytic solution. With a large time step At = 10k,
we have only two results with LSS and NLSS as shown in Fig. 4
(b) and we can see that the gaps between analytic and numerical
results are large. The other schemes have unstable results with
large time step size. Similarly, the radius of an sphere in three-

dimensional space evolves with R(t) = /R5 — 4t. The numerical
results comparing with analytic solution are shown in Fig. 5. The
behavior of numerical solutions is similar to results in the previous
two-dimensional test. We used all same parameter values as the
two-dimensional case except T = 120h°.

4. Conclusions

In this paper, we reviewed and compared the performance of
several numerical schemes for solving the Allen-Cahn equation
representing a model for antiphase domain coarsening in a binary
mixture. The numerical schemes we considered were explicit, fully
implicit, Crank-Nicolson, and unconditionally gradient stable
schemes. We showed the solvability and stability conditions of
the numerical schemes. The continuous problem has a decreasing
total energy and we showed the same property for the correspond-
ing discrete problem by using eigenvalues of the Hessian matrix of
the energy functional. We also showed the pointwise boundedness
of the numerical solution for the Allen-Cahn equation. Numerical
experiments such as traveling wave and motion by mean curvature
were performed. The numerical results suggest that NLSS is best
among the schemes in terms of stability and accuracy.
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